如果你想发表学术论文的话 可以去“2000论文”网看看是否有你需要的刊物,诚信服务,质量保证。现在由代理机构为你投稿,既节约了时间,也增加了你文章的录用率。有兴趣的话,可以去网站在线咨询下。
你好!我很愿意回答你的问题,既不是因为我是高人,也不是因为你的赏金高,因为现在浮躁和投机取巧的在增多,像你这样认真写论文投稿的越来越少了,我愿意尽我所知回答一二。第一、投稿具体流程并不麻烦:您首先确定要投稿的刊物,然后根据该刊物的投稿须知整理稿件,整好后就可以按照该刊物的电子邮箱投给编辑;等待编辑的审稿回音,如果可以采用,他会通知你可能发表日期、版面费(一般都有)等,同时还有可能给你说:是否需要内容修改、格式完善、信息补充、是否需要审稿费等。你照做就成了。最后就是交钱等候发表和杂志社寄来赠刊(一般两本)。第二、要看较权威的学术论文,最好还是到中国知网、万方、维普资讯等网站,但需要付费。其他免费且具有较高权威、论文收录全面、系统的网站几乎没有。不过有的学科类小网站收录的论文也比较丰富,你可以根据自己的研究内容不妨在网上搜一搜。第三、至于有哪些好的期刊可以投稿。我强列推荐你收藏一个自助投稿网站——万维书刊。上面有一万多中期刊,且都进行了分类,自助投稿、免费、非中介、直投编辑部,电子邮箱、期刊简介、征稿启事、投稿须知等基本都有,并且大多还能连接登录他们的官方网站。投稿用着很方便!在谷歌,百度上键入“万维书刊”,搜索首页便是!也可以向同学们推荐!
在电子产品微型化、多功能化的发展趋势下,单个焊点所承载的电流密度和焊点的服役温度与日俱增,这就给微电子封装焊点的可靠性带来了巨大的挑战。电迁移失效作为微电子产品一种新的失效形式,而逐渐引起广泛的关注。电迁移效应的物理本质是在电子风力驱使下,焊点中的原子沿着电子流方向由阴极不断向阳极迁移的现象。 电迁移效应加速电子元器件的失效,缩短了电子产品的有效使用寿命,严重的影响了微电子封装焊点的可靠性。 基于以上研究,本文采用引线对接焊点为研究对象,在排除电流拥挤效应和焦耳热效应对电迁移效应造成干扰的前提下,首先研究了在78×10~4A/cm~2电流密度、100℃和125℃条件下加载对Cu/Sn-0Ag-5Cu/Cu焊点可靠性的影响。结果发现电流加载下阳极和阴极界面IMC的生长呈现明显的极性效应,阳极界面IMC的生长被增强,阴极界面IMC的生长被抑制。 认为是Cu原子的扩散主导界面IMC的生长,在电子风力、化学势梯度和背应力三者的综合作用下,阳极界面IMC的生长与加载时间呈抛物线关系。焊点的抗拉强度随着加载时间迅速下降,断裂模式由纯剪切断裂转为微孔聚集型断裂,并最终向脆性断裂转变,断裂位置由钎料中向阴极界面处转移。 作为对比分析研究了Cu/Sn-0Ag-5Cu/Cu焊点在100℃、125℃、150℃等温时效对焊点可靠性的影响。结果表明界面IMC随时效时间的延长而不断生长,时效温度越高界面IMC的生长速率越大,约为相同温度下电迁移试样阳极界面IMC生长速率的1/30。时效时间延长,焊点的抗拉强度下降,其下降速率约为相同温度下电迁移试样的1/9。高温长时间时效,界面处有Kirkendall空洞出现。焊点的断裂模式由纯剪切断裂变为微孔聚集型断裂,但断裂位置始终位于钎料中。同时还研究了Cu/Sn-0Ag-5Cu/Ni焊点在130℃等温时效过程中界面IMC的生长情况,发现母材Ni侧的界面IMC的生长速率比母材Cu侧稍慢,界面IMC的成分十分复杂。最后对Cu/Sn-9Zn/Cu焊点在78×10~4A/cm~2电流密度、125℃加载条件下的电迁移现象进行了研究,发现了阴极和阳极界面IMC都增厚,且阴极界面IMC生长速率更大的异常现象。 分析界面IMC成分后认为,是由Sn原子的扩散主导IMC的生长导致的
中国知网
在电子产品微型化、多功能化的发展趋势下,单个焊点所承载的电流密度和焊点的服役温度与日俱增,这就给微电子封装焊点的可靠性带来了巨大的挑战。电迁移失效作为微电子产品一种新的失效形式,而逐渐引起广泛的关注。电迁移效应的物理本质是在电子风力驱使下,焊点中的原子沿着电子流方向由阴极不断向阳极迁移的现象。 电迁移效应加速电子元器件的失效,缩短了电子产品的有效使用寿命,严重的影响了微电子封装焊点的可靠性。 基于以上研究,本文采用引线对接焊点为研究对象,在排除电流拥挤效应和焦耳热效应对电迁移效应造成干扰的前提下,首先研究了在78×10~4A/cm~2电流密度、100℃和125℃条件下加载对Cu/Sn-0Ag-5Cu/Cu焊点可靠性的影响。结果发现电流加载下阳极和阴极界面IMC的生长呈现明显的极性效应,阳极界面IMC的生长被增强,阴极界面IMC的生长被抑制。 认为是Cu原子的扩散主导界面IMC的生长,在电子风力、化学势梯度和背应力三者的综合作用下,阳极界面IMC的生长与加载时间呈抛物线关系。焊点的抗拉强度随着加载时间迅速下降,断裂模式由纯剪切断裂转为微孔聚集型断裂,并最终向脆性断裂转变,断裂位置由钎料中向阴极界面处转移。 作为对比分析研究了Cu/Sn-0Ag-5Cu/Cu焊点在100℃、125℃、150℃等温时效对焊点可靠性的影响。结果表明界面IMC随时效时间的延长而不断生长,时效温度越高界面IMC的生长速率越大,约为相同温度下电迁移试样阳极界面IMC生长速率的1/30。时效时间延长,焊点的抗拉强度下降,其下降速率约为相同温度下电迁移试样的1/9。高温长时间时效,界面处有Kirkendall空洞出现。焊点的断裂模式由纯剪切断裂变为微孔聚集型断裂,但断裂位置始终位于钎料中。同时还研究了Cu/Sn-0Ag-5Cu/Ni焊点在130℃等温时效过程中界面IMC的生长情况,发现母材Ni侧的界面IMC的生长速率比母材Cu侧稍慢,界面IMC的成分十分复杂。最后对Cu/Sn-9Zn/Cu焊点在78×10~4A/cm~2电流密度、125℃加载条件下的电迁移现象进行了研究,发现了阴极和阳极界面IMC都增厚,且阴极界面IMC生长速率更大的异常现象。 分析界面IMC成分后认为,是由Sn原子的扩散主导IMC的生长导致的
微电子学与计算机官网网页链接
谢谢,那邮箱投稿后怎么查询稿件编号和稿件状态?
3个月。一般投过去的文章,无疑石沉大海,除非你找关系。可以很快。来品 优刊的话也就两个月,比较的有实力。
投稿《微电子学与计算机》直接被拒,而且没有任何理由,之前一直问审稿进度,它告诉我审理中。超过50天,我问他,他告诉我没有被录用。是不是很垃圾的期刊??????不负责任!!我也有两个国家基金项目。哎 不录用也要告诉理由啊! 我发邮件过去问拒稿理由,他告诉我:改投其他期刊? 真不知道这是什么态度。
大约6dm吧。给个好评吧
稿件处理流程:(评审过程所需的时间依专业领域、专家、同一专业稿件数量无法准确控制)收稿-> 分稿(派给责任编辑)-> 外审 -> 1位专家认为退稿 -> 通知作者退稿收稿-> 分稿(派给责任编辑)-> 外审 -> 2位专家同意刊登 -> 送编委会审批 -> 未通过 -> 通知作者退稿收稿-> 分稿(派给责任编辑)-> 外审 -> 2位专家同意刊登 -> 送编委会审批 -> 通过 -> 通知作者修改 -> 修改符合要求 -> 排队待刊登/可要求寄录用证明
我的也是,从投稿到录用是一个月,还不知道啥时候会给发表
如果你想发表学术论文的话 可以去“2000论文”网看看是否有你需要的刊物,诚信服务,质量保证。现在由代理机构为你投稿,既节约了时间,也增加了你文章的录用率。有兴趣的话,可以去网站在线咨询下。
你好!我很愿意回答你的问题,既不是因为我是高人,也不是因为你的赏金高,因为现在浮躁和投机取巧的在增多,像你这样认真写论文投稿的越来越少了,我愿意尽我所知回答一二。第一、投稿具体流程并不麻烦:您首先确定要投稿的刊物,然后根据该刊物的投稿须知整理稿件,整好后就可以按照该刊物的电子邮箱投给编辑;等待编辑的审稿回音,如果可以采用,他会通知你可能发表日期、版面费(一般都有)等,同时还有可能给你说:是否需要内容修改、格式完善、信息补充、是否需要审稿费等。你照做就成了。最后就是交钱等候发表和杂志社寄来赠刊(一般两本)。第二、要看较权威的学术论文,最好还是到中国知网、万方、维普资讯等网站,但需要付费。其他免费且具有较高权威、论文收录全面、系统的网站几乎没有。不过有的学科类小网站收录的论文也比较丰富,你可以根据自己的研究内容不妨在网上搜一搜。第三、至于有哪些好的期刊可以投稿。我强列推荐你收藏一个自助投稿网站——万维书刊。上面有一万多中期刊,且都进行了分类,自助投稿、免费、非中介、直投编辑部,电子邮箱、期刊简介、征稿启事、投稿须知等基本都有,并且大多还能连接登录他们的官方网站。投稿用着很方便!在谷歌,百度上键入“万维书刊”,搜索首页便是!也可以向同学们推荐!
现在发表学术论文都要收费的,如果文章质量非常好,可以试投核心期刊。可能咨询下导师,他应该有门路。具体请参考我的空间。
在电子产品微型化、多功能化的发展趋势下,单个焊点所承载的电流密度和焊点的服役温度与日俱增,这就给微电子封装焊点的可靠性带来了巨大的挑战。电迁移失效作为微电子产品一种新的失效形式,而逐渐引起广泛的关注。电迁移效应的物理本质是在电子风力驱使下,焊点中的原子沿着电子流方向由阴极不断向阳极迁移的现象。 电迁移效应加速电子元器件的失效,缩短了电子产品的有效使用寿命,严重的影响了微电子封装焊点的可靠性。 基于以上研究,本文采用引线对接焊点为研究对象,在排除电流拥挤效应和焦耳热效应对电迁移效应造成干扰的前提下,首先研究了在78×10~4A/cm~2电流密度、100℃和125℃条件下加载对Cu/Sn-0Ag-5Cu/Cu焊点可靠性的影响。结果发现电流加载下阳极和阴极界面IMC的生长呈现明显的极性效应,阳极界面IMC的生长被增强,阴极界面IMC的生长被抑制。 认为是Cu原子的扩散主导界面IMC的生长,在电子风力、化学势梯度和背应力三者的综合作用下,阳极界面IMC的生长与加载时间呈抛物线关系。焊点的抗拉强度随着加载时间迅速下降,断裂模式由纯剪切断裂转为微孔聚集型断裂,并最终向脆性断裂转变,断裂位置由钎料中向阴极界面处转移。 作为对比分析研究了Cu/Sn-0Ag-5Cu/Cu焊点在100℃、125℃、150℃等温时效对焊点可靠性的影响。结果表明界面IMC随时效时间的延长而不断生长,时效温度越高界面IMC的生长速率越大,约为相同温度下电迁移试样阳极界面IMC生长速率的1/30。时效时间延长,焊点的抗拉强度下降,其下降速率约为相同温度下电迁移试样的1/9。高温长时间时效,界面处有Kirkendall空洞出现。焊点的断裂模式由纯剪切断裂变为微孔聚集型断裂,但断裂位置始终位于钎料中。同时还研究了Cu/Sn-0Ag-5Cu/Ni焊点在130℃等温时效过程中界面IMC的生长情况,发现母材Ni侧的界面IMC的生长速率比母材Cu侧稍慢,界面IMC的成分十分复杂。最后对Cu/Sn-9Zn/Cu焊点在78×10~4A/cm~2电流密度、125℃加载条件下的电迁移现象进行了研究,发现了阴极和阳极界面IMC都增厚,且阴极界面IMC生长速率更大的异常现象。 分析界面IMC成分后认为,是由Sn原子的扩散主导IMC的生长导致的