可以写一些数学小故事:古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在说:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。阿基米德出生于公元前287年意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。
类似这样的吧
既然是关于数学的,又是一年级的,就设计有些可爱图案,然后在旁边或里面写一些,也可以写上关于数学的历史~~~找一些数学类的书,剪些题下来,再加些图画 谈谈我的收获我的困惑
阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符 九九歌 九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。 十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。 1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。 大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。 奇妙的圆形 圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。 古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。 大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。 圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在1415926与1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。 从一加到一百 七岁时高斯进了 S Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 勾股定理 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 无声胜有声 在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢? 因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。 科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。 为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。 这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。 这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。 哥德巴赫猜想 哥德巴赫(Goldbach C,18~20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。 够了吧,自己选择吧 回答人的补充 2009-08-15 10:10 一次只能一万字,而且要审核,比较慢,所以第二部分放这里
可以先把知识点列出来,然后把其知识点相对应的易错题,基础题,难题列出来,再加上评析,可以参考数学错题集那样子,希望能帮忙!
人的一生,面临着许多挑战,当你在课堂上举起手回答问题时,那便是一次勇气的挑战;当你拿着改错的试卷去找老师时,那便是一次品德的挑战;而当你勇敢地交了一位新朋友时,这就是一次友情的挑战。记得一开始学舞蹈的时候,自己年龄还很小,所以非常怕痛,而那些基本功差不多什么也不会。有一次上课,老师让我们劈叉,因为下次课要学的舞蹈里面统一有这个动作,即使每天压腿,但还是有一点劈不下去,怎么办,看着别人的轻松自在,等待着我的只是满脸的焦急,老师走过来,看到我这个样子,没有怎么批评,只是对我说明天上课时一定要劈下去,今天在家的时候必须好好练习。回到家,不停地练习,我依然是老样子,怎么办?怎么办?只有一点点了,最后的一点点,几次硬撑着要下去,可却又被痛得收了回来。就这样,一直持续了好久,自己依然是个老样子。经过自己最后的思考,终于下定了决心,决定勇敢面对这个挑战,此刻的我恐怕已经做好了十足的准备来迎接这个挑战,不怕苦,不怕痛双手紧握着,双眼紧闭着,双腿用力前倾,只听见“啪”的一声,我的两条腿终于紧紧“贴”在了地面上,我终于劈下去了,我做到了,犹豫了这么久的我终于做到了,不禁开心地大笑了起来。即使过后双腿有一点的疼痛,但是,我再次成功地完成了人生中的一个挑战。那一刻,我体验到了挑战自我的辛苦与喜悦,那将永远不能磨灭,历经了重重磨难终于重见阳光的欣慰。当挑战来临时,毅然接受,毫不畏惧。当挑战来临时,抓住机会,把握每一分每一秒。当挑战来临时,像天空上翱翔的雄鹰,展翅高飞。只要勇敢面对挑战,相信蝴蝶也能破茧而出。
小学教材,自然常识,科学地理,数学核心方法,新校园,科学时代,这都是公认的期刊,都很有意义。
比如中等数学
两点边值条件热弹性收缩模型的线性稳定性 黄慧 费浦生 燕子宗 〈文摘〉 PDF全文 ---------(1)NEWMAN猜想的一个简单证明 吴树宏 〈文摘〉 PDF全文 ---------(9)由谱数据构造实双反对称矩阵 殷庆祥 〈文摘〉 PDF全文 ---------(11)弱P-反演半群上的强P-同余 范兴奎 陈倩华 〈文摘〉 PDF全文 ---------(17)超凸空间中的选择定理及弱外超凸集的性质 杨泽恒 王绍荣 〈文摘〉 PDF全文 ---------(23)一个微分方程的解及其应用 王建平 〈文摘〉 PDF全文 ---------(31)态射集中的加权星序和加权广义逆 岑建苗 〈文摘〉 PDF全文 ---------(37)STML()范畴 张杰 邹杰涛 孙大宁 〈文摘〉 PDF全文 ---------(44)关于体上分块矩阵的群逆 卜长江 〈文摘〉 PDF全文 ---------(49)AF C*-代数上的映射 纪培胜 于静 〈文摘〉 PDF全文 ---------(53)区间和圆周上的distal自映射 赵俊玲 〈文摘〉 PDF全文 ---------(58)关于分形插值函数参数界定问题的一个注记 阮正顺 王小林 〈文摘〉 PDF全文 ---------(63)两两序列比对的一种新方法 涂俐兰 〈文摘〉 PDF全文 ---------(67)一类非线性Cantor集维数的计算机估值 钟婷 〈文摘〉 PDF全文 ---------(71)基于数论的总体优化随机搜索算法 钟良 钟守楠 章晓燕 〈文摘〉 PDF全文 ---------(75)关于无限级拟亚纯映射的Borel方向 张洪申 〈文摘〉 PDF全文 ---------(83)Feigenbaum函数方程的单谷扩充连续解 张爱华 王立娟 〈文摘〉 PDF全文 ---------(89)π-可分群中关于正规π-子群的π-Brauer特征标 陈生安 〈文摘〉 PDF全文 ---------(94)随机中立型泛函微分方程的稳定性态 李必文 陈静 〈文摘〉 PDF全文 ---------(99)鞅差序列的Bernstein型不等式及其应用 李国亮 〈文摘〉 PDF全文 ---------(103)λ-超凸空间中的一个选择定理及其应用 赵富坤 吴鲜 杨泽恒 〈文摘〉 PDF全文 ---------(109)求解非线性互补问题的一个非精确信赖域方法 马昌凤 〈文摘〉 PDF全文 ---------(113)关于一个定理的改进 秦晓红 杨茵 〈文摘〉 PDF全文 ---------(117)
高等数学 研究数学通报一般图书馆都有吧
数学天堂21世纪不可缺少的三样东西:水、空气、数学(可以做口号)21世纪数学报数学头脑风暴数学轨迹阳光数学口号:数学要你抱抱他
趣味数学生活中的数学数学真奇妙数学园地数学艺苑奥数乐园,数学论坛数学天堂数学小灵通数学艺苑数的乐趣趣味数学
学数学,爱数学
六一手抄报创意主标题字体 (1)