首页

> 期刊发表知识库

首页 期刊发表知识库 问题

关于数学的文献

发布时间:

关于数学的文献

这些是从课件上复制的。要课件的话 加1178429388 或者留下 邮箱。希望能帮到你! 文献是记录有知识的一切载体。凡是人类的知识用文字、图形、符号、声频、视频、电子等技术手段记载在一定的物质载体上的有价值的记录,统称为文献。数学文献:记载数学知识和研究成果的各种图书、期刊、学位论文、研究报告、会议资料、政府出版物、论文预印本以及科学家之间讨论数学问题的谈话记录及通信等 最早数学文献:美索不达米亚泥版的楔形文,公元前1800年的埃及纸草书(莫斯科纸草书与莱茵德纸草书)(瑞)伯努利家族:雅格布(1654-1705)、约翰(1667-1748)、丹尼尔(1700-1782)1715年泰勒(英, 1685-1731)《正和反的增量》1750年起达朗贝尔(法, 1717-1783)《百科全书》1797年拉格朗日(法, 1736-1813)《解析函数论》18世纪最伟大的数学家: 欧拉(瑞, 1707-1783)的《无穷分析引论》(1748)、《微分学原理》(1755)、《积分学原理》(1768)1801年高斯(德, 1777-1855)《算术研究》1812年拉普拉斯(法, 1749-1827)《分析概率论》1821年柯西(法, 1789-1857)《代数分析教程》1822年傅里叶(法, 1768-1830)《热的解析理论》1826年罗巴切夫斯基(俄, 1792-1856)《论几何基础》1843年哈密顿(英, 1805-1865) 《四元数概论》 1854年黎曼(德, 1826-1866) 《几何学基础的假说》1872年克莱因(德, 1849-1925)《爱尔朗根纲领》1874年康托(德, 1845-1918)一系列集合论论文1895年庞加莱(法, 1854-1912)《位置分析》文献特点:文献数量激增、类型复杂、发表分散、语种多样、内容交叉、越来越专、分类独特 美国《数学评论》选定的400多种数学核心期刊中包含的数学论文不足总量的75%,数学文献的引文有21%来自非数学期刊俄罗斯《文摘杂志·数学》引用了35种语言的文献 数学特点:计算机科学迅猛发展、应用数学众多分支以及纯粹数学若干重大突破 数学文献重要性 数学研究发展的基石,数学研究活动的产物 数学研究活动主要是单独进行的,掌握文献的多少往往是研究工作取得成功的关键 数学研究是一项竞争性较强的活动,研究的进展在很大程度上取决于对文献的搜集和积累 丛书 汇集若干有单独书名的著作,冠以一个总书名的连续出版物 美国的学术出版社,德国的斯普林格出版社,荷兰的北荷兰出版公司,英国的剑桥大学出版社,以及著名的数学组织、学术机构等都先后出版了大量数学丛书。 唐秀颖主编《数学题解辞典》,上海辞书出版社,1983 日本数学会编《数学百科辞典》中译本,科学出版社,1984 《现代数学手册》(5卷本),华中科技大学出版社,2000-2001华罗庚、苏步青主编《中国大百科全书 · 数学》,中国大百科全书出版社,1988《数学百科全书》(5卷本)中译本,科学出版社,1994-2000 全国自然科学名词审定委员会编《数学名词》,科学出版社,1994程民德主编《中国现代数学家传》(5卷本),江苏教育出版社,1994-2002 吴文俊主编《世界著名数学家传》(上下集),科学出版社,1995

关于数学的参考文献

你参考的什么文章或书籍那就是什么。参考文献自己找就好。

数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

如何在数学教育教学中提升学生的数学核心素养进入21世纪,社会进步、科学技术和数学发展异常迅速,甚至超出想象,这势必会影响教育,影响基础教育,影响数学教育。20世纪学生应具备的基本能力与21世纪学生应具备的核心素养一致吗?哪些不一致?这是跨世纪的挑战,也是建立基于核心素养的课程体系的背景。一、正确认识和理解数学核心素养21世纪,我国确定了“立德树人”“以人为本”的教育改革指导思想,强调以课程为载体落实指导思想,进而以高中课程标准修订为突破,探索、积累经验,逐步推广。“以素养立意课程体系”主要是将培养、提升学生的核心素养(通识)、学科核心素养作为课程基本目标,根据每一个学科的特点,把三维目标通过每一个学科的核心素养加以落实,把课程总目标与学科教育有机结合。我国数学教育工作者一直在思考:数学教育应留给学生什么?数学核心素养是具有数学基本特征的适应个人终身发展和社会发展需要的人的关键能力与思维品质。不严格地说,数学核心素养不仅包含外显能力,还包含内在思维品质。数学课标修订组提出了六个核心素养:数学抽象、数学推理、数学建模、直观想象、数学运算、数据分析,它是五大基本能力的延续和深化。数学核心素养是数学课程目标的重要的基本组成部分,每个数学核心素养通过“情境与问题”“知识与技能”“思维与表达”“交流与反思”四个方面表现出来,这四个方面也是描述核心素养水平的四个维度。每一个数学核心素养有自身的独立性,在学习数学的过程中,在发现与提出、分析与解决数学问题和实际问题中,各自在不同的环节发挥不同的作用,但我们更需要强调整体性,六个核心素养是一个有机联系的整体,它们不是两两“不交”的独立素养,而是相互“交着”相互“渗透”的,在直观想象中,蕴含着抽象、推理、模型;在抽象概括中,也离不开直观、推理、模型;在数学建模的过程中,更需要直观、推理、模型交互发挥作用……数学核心素养不是独立于知识、技能、思想、经验之外的“神秘”概念,综合体现出对数学知识的理解、对数学技能方法的掌握、对数学思想的感悟及对数学活动经验的积累。二、基于数学核心素养的数学课程体系基于数学核心素养的数学课程要突出三件事,一是符合数学规律并结构清晰;二是突出数学本质;三是便于转化,转化为数学核心素养。体现选择性的高中数学课程结构不同的学生拥有不同的特长,会选择不同的发展方向,需要有不同水平的数学核心素养,而数学课程标准为不同发展方向的学生设计了不同的课程。必修课程为学生发展提供共同基础,是高中毕业考试的内容要求。选修I课程是供学生选择的课程,必修课程和选修I课程是高考的内容要求。选修Ⅱ课程分为ABCDE五类。这些课程为学生确定发展方向提供引导,为学生展示数学才能提供平台,为学生发展数学兴趣提供选择,为大学自主招生提供参考。学生可以根据自己的志向和大学专业的要求选择学习其中的某些课程。A课程是部分理工类(数学、物理、计算机、精密仪器等)学生可以选择的课程。B课程是经济、社会(数理经济等)和部分理工类(化学、生物、机械等)学生可以选择的课程。C课程是人文类(历史、语言等)学生可以选择的课程。D课程是体育、音乐、美术(艺术)类学生等可以选择的课程。E课程(校本课程)是学校自主开设,供学生自主选择的课程,特别包括大学先修课程(CAP)。体现数学核心素养发展的高中数学内容结构数学有丰富的研究领域、问题和方法,形成了很多特点鲜明、作用不同的数学分支,但数学又是一个有机整体,拥有清晰的结构,从学习的角度来说,更是如此。只有这样,才能更好地提升、发展学生的数学核心素养。根据高中学习特点和需要,高中数学内容将突出三条贯穿始终的内容主线:函数及应用、几何与代数、统计与概率。数学建模与数学探究是另一条贯穿始终的主线。另外,还应将数学文化渗透在高中课程内容中。抓住这些贯穿始终的主线,才能反复感受到抽象、推理(运算)、模型、直观所起的作用,有效地促进学生数学核心素养的提升和发展。体现数学本质的关键问题和主要概念、定理、模型、思想方法、应用在整体认识高中数学内容结构和主线的基础上,需要进一步深入思考支撑主线的关键问题和主要概念、定理、模型、思想方法、应用等。以函数主线为例,首先,抓住以下关键问题:整体、全面认识函数概念;深入理解函数性质——整体性质与局部性质;掌握一批基本函数类;把握函数应用;感悟研究函数思想方法;深入理解主要概念、定理、模型、思想方法、应用等,步步深入,逐步提升数学核心素养。三、基于数学核心素养的数学教学教什么,如何教?这是教师教学的永恒课题。基于数学核心素养的教师数学教学,首先要更新观念。培养并提升核心素养,不能依赖模仿、记忆,更需要理解、感悟,需要主动、自觉,将“学生为本”的理念与教学实际有机结合。整体把握数学课程基于数学核心素养的数学教学,整体理解数学课程是基础。高中数学课程是一个有机整体,要整体理解数学课程性质与理念,整体掌握数学课程目标,特别需要整体感悟数学核心素养,整体认识数学课程内容结构—主线—主题—关键概念、定理、模型、思想方法、应用,整体设计与实施教学。在这一过程中,学生会不断感悟、理解抽象、推理、运算、直观的作用,得到新的数学模型,改进思维品质,扩大应用范围,提升关键能力,改善思维品质。主题(单元)教学基于数学核心素养的数学教学,要求教师能从一节一节的教学中跳出来,以“主题(单元)”作为进行教学的基本教学思考对象。可以以“章”作为单元,如将“三角函数”作为教学设计单元;也可以以数学中的重要主题为教学设计单元,如“距离”或“几何度量关系:距离、角度”等;也可以以数学中通性通法为单元,如“模型与待定系数”等。这是深度学习的核心,也是深度学习的抓手,也是整体把握数学课程的抓手,可突出本质——数学核心素养,有利于教学方式多样化,把“教”与“学”结合起来,促进学生自主学习;有助于提高数学教师专业水平(数学、教育教学理论、实践),这是数学骨干教师的基本功,不是教教材,而是创造性地使用教材教数学。抓住数学本质我国著名数学家华罗庚反复强调:能把书读厚,又能把书读薄,读薄就是抓住本质,抓住重点,抓住本质,才能更好地理解和提升数学核心素养。问题引领——发现、提出问题与分析解决问题在关于数学和数学教育的大讨论中,问及在数学和数学教育中什么最重要时,著名数学家P Harmous 在一篇总结文章中强调“问题是关键”,数学概念、定理、模型和应用都是在解决问题的过程中总结形成的。在数学课程目标中,特别强调发展学生发现、提出问题与分析解决问题的能力,在基于数学核心素养的教学中,这也是关注的重点。创设合适情境创设合适情境是基于数学核心素养教学的另一关注点。首先要对“情境需要”有个全面的认识,包括实际情境、科学情境、数学情境、历史情境。情境选择的基本原则是便于理解学习内容和要完成的任务,循序渐进,进而考虑激发学生的兴趣和热情。掌握学情,加强“会学”指导“授之于鱼,不如授之以渔”是古训,这与学会学习的理念一致,“会学”比“学会”重要。“会学数学”应包括:阅读理解、质疑提问、梳理总结、表达交流。以“数学阅读理解”为例,需要清楚数学语言由数学自然语言、符号语言、图形语言组成,它的特点是准确、清晰、简洁,数学阅读就要会读“数学普通话”“符号”“图形(表格)”。而数学符号、图形又是一个系统,彼此联系,学生不能很快习惯,需要指导,不能太急。数学教师强调“学法指导”,是一个很好的经验,需要坚持、总结、提升。四、基于数学核心素养的数学学习基于数学核心素养的数学学习,应关注以下问题。视野—见识学习数学需要有开阔视野,了解数学的历史,了解数学的发展,了解数学在社会发展中作用,在美国科学委员会写给美国总统的咨询报告中特别强调:“高科技本质上是数学技术”;了解数学在现实生活中的作用,英国研究理事会的评估报告认为,数学研究对英国经济的贡献约占英国所有工作岗位的10%和GDP增加值总额的16%。对优秀学生,教师应引导他们不满足学到数学知识,得到好成绩,还需要好的见识。见识比知识更重要。做题=数学学习?会学—自主以做题取代数学学习,这是数学教育中的突出问题。通过做题巩固学习内容,这是学习数学的重要环节,但仅靠做题有很大的局限性。学习数学也需要理解数学概念、定理、应用,需要理解不同内容之间的联系。做题与做数学是有区别的。做数学,首先要选择问题,进而猜想结论,确定条件,探索解决问题的方法;做题,完全不同,条件和结论是确定的,方法也是学习过的,在锻炼数学素养方面有一定的局限性。积极参与数学建模和数学探究数学建模是对现实问题进行数学抽象,用数学语言表达问题,用数学知识与方法构建模型解决问题的过程。数学探究是围绕某个具体数学问题,开展自主探究、合作研究,并最终解决数学问题的过程。它们是高中阶段数学课程的重要内容。“数学建模活动”和“数学探究活动”主要以课题研究的形式开展。课题研究过程包括选题、开题、做题、结题四个环节,这是促进学生自主学习的一项重要措施,可以让他们经历解决问题的过程。会交流在数学学习为主的阶段,交流很重要。听一遍不如看一遍,看一遍不如讲一遍,讲一遍不如写一遍,很有道理。大学研究生授课的主要方式是让学生报告,导师很容易从报告的过程中判断是否真懂,希望中学教师和学生也能借鉴这种方法——交流。基于数学核心素养的评价是落实的重要措施,尤其是高考评价。如果高考试题、考试等形式不进行改变,这次改革就很难落实。当然,也应循序渐进。数学课标修订组下专门成立了“基于数学核心素养考试命题研究组”,研究需要改进的命题要素和形式。因此,基于数学核心素养评价的命题,要关注以下要素:(1)命题者要整体把握高中数学课程,围绕内容主线—主题(单元)和关键概念、结论、模型、思想方法、应用展开;(2)突出数学本质;(3)创设合适情境,强调发现、提出和分析、解决问题背景,情境包括实际情境、科学情境、数学情境、历史情境;(4)强调开放性、探究性。如何在数学教育中提升学生的数学核心素养,是数学教育工作者面临的新课题。一线数学教师是落实本次高中课程标准修订的关键,希望广大教师注重提升自身数学素养,特别是数学核心素养,关注数学内容、数学教学理论、数学教学实践与数学核心素养的有机结合,直面问题,不断探索,为学生营造良好的数学教育。

关于数学的数学报

可以写一些数学小故事:古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在说:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。阿基米德出生于公元前287年意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。

关于数学教学的参考文献

一、小学数学教学案例的内涵一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,同时也可能包含解决这些问题的方法。教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。二、小学数学教学案例的特征1、素材真实性案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考。2、选材典型性小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突。3、情节具体性小学数学教学案例的叙述要具体、特殊,要能够把数学教学与学生的数学思维活动生动地描述出来。例如,反映某一个数学教师与学生围绕一个特定的数学教学目标和特定的数学教学内容的双边活动,不应是对活动总体特征所作的抽象化的、概括性的说明,而应是对双边活动的具体情节展示叙述,做到翔实、有趣。4、时空广延性小学数学教学案例的描述要把事例置于一个时空框架之中,也就是要说明事情事件发生的时间、地点等。案例的描述要放在一个现实的生活场景之中,使人有身临其境之感。5、目标全面性小学数学数学案例对行为等的叙述,要能反映教师和学生教与学的特性,涵盖教学目标的全部,揭示出人物的内心世界。如数学认知的思维活动,对教学的态度、情感,学习数学的动机、需要等。三、小学数学教学案例的功能小学数学教师写作案例具有以下功能:1、记录功能——案例写作为小学数学教师提供了一个记录自己教学经历的机会。案例写作实际上是对教师职业一些困惑、喜悦、问题等等的记录。如果们说一个数学教师展示其自身生命价值的主要所在,是在课堂、在学校、在与学生的交往的话,那么,案例在一定程度上就是教师生命之光的记载。在案例中,有教师的情感,同时也蕴涵着无限的生命力。案例能够折射出教育历程的演变,它一方面可以作为个人发展史的反映,另一方面也可以作为社会背景下教育的变革历程。2、导向功能——案例写作可以促使小学数学教师更为深刻地认识到自己工作的重点和难点。能够成为案例的事实,往往是小学数学教师工作中魂牵梦绕的难题,或者是刻骨铭心的事件。如果你对案例写作已经成为一种习惯,一种工作方式,那么随着案例材料的增多,你就会逐渐发现你自身工作的难点在哪里,今后努力的方向是什么。3、反思功能——案例写作可以促进小学数学教师对自身行为的反思,提升教学工作的专业水平。如果把反思当成数学教学工作的有机组成部分,而不是一时冲动或岁末特有的行为,就可以极大地促进小学数学教师的专业发展,促进其向专业化水平迈进。4、传播功能——案例为教师间分享经验、加强沟通提供了一种有效的方法。教师工作主要体现为一种个体化劳动过程,平时相互之间的交流相对较少。案例写作是民书面形式反映某位或某些教师的教育教学经历。它可以使其他教师有效地了解同事的思想行为,使个人的经验成为大家共享的财富。同时,通过个人分析、小组讨论等,认识到自己所从事工作的复杂性,以及所面临问题的多样性和歧义性,并且可以把自己原有的缄默的知识提升出来,把自己那些只可意会不可言传或不证自明的知识、价值、态度等,通过讨论和批判性分析从感性认识提升到理性认识。四、小学数学教学案例的编制1、编制原则(1)客观性原则。一个案例就是关于某一个实际情境的描述,它不能用“摇椅上杜撰的事实”来代替,也不能用“从抽象的、概括化理论中演绎出的事实”来代替。坚持实事求是,尽量依据时间发展顺序客观记录事例。杜绝掺假现象,不会“合理构想”。不搞“文字游戏”,不因文字篇章的需要而扭曲或改变事实。(2)独特性原则。在撰写案例活动中,倡导教师开展创造性的工作,不人云亦云,不见风使舵,要有个性的观察、个性的实践、个性的反思、个性的表述。(3)价值性原则。撰写案例的目的在于推动教学的改革。因此,所选事例的先进性与实用性价值程度,与案例本身的实际意义成正比。所以,要站在时代的高度面向教学实际需要选择事例。2、编制格式分析有关案例不难发现案例的一般格式与写法。目前专家撰写的案例主要格式是“案例+分析”,其变式主要有“提示——案例——分析”与“提示——案例——访谈录——分析”。“提示”,主要简介“案例”与“分析”中将要涉及的基本教育理论,可以促进理论知识与教学实例的融合。“访谈录”以对话的形式记录对有关教师进行的访谈,以外化教师的缄默知识,便于他人更加全面、深刻地了解案例产生的背景、过程和做法。教师撰写的案例主要格式是“片断+反思”,其变式主要有“背景——片断——反思”与“片断——评析——反思”。可见,案例主要由两大部分组成,即“案例+反思”。案例是为了一个主题而截取的教学行为片断,这些片断蕴涵了一定的教育理论。它源于实践,但高于实践。案例以真实的教师和事件为基础,但又不是简单而机械的课堂实录,它是教师对自身典型教学事件的描述,它可以描述一节课或一个片断,也可以围绕一个主题,把几节课的相关片断叠加。从案例内容的表述形式看,主要有“叙事式”和“对话式”;从案例内容的编排方式看主要有“单一式”、“对照式”和“递进式”。反思一方面是基于案例,做到理论联系实际,实例印证理论;另一方面要高于案例,要从案例的分析中生发出新的问题,提出新的观点。09-05-03 | 添加评论0简单爱爱爱爱1.学生对数学课的热情程度。 主要反映学生在学习活动中是否处于最佳心理状态。 它表现为:(1)最佳注意状态:注意集中,专心致志,全神贯注,注意稳定。 (2)最佳认知状态:感知清晰、观察敏锐、思维活跃、想象丰富、记忆牢固、大脑处于最佳兴奋状态。 (3)最佳情感状态:态度认真、学习热情、兴趣浓厚、充满活力、生动活泼。 (4)最佳意志状态:动机强烈、求知好问、主动积极、克服困难、能自制、有毅力。 2.学生投入学习的程度。 主要评价教学设计是否符合学生实际水平,留有的思维空间是否能引起学生的认知需要。美国教育心理学家布鲁腊的“掌握学习理论”认为:“只要有合适的学习条件,绝大多数学生在学习能力、学习效率和继续学习的动机等方面将变得十分接近。造成学生个别差异的三个变量是:学生已有经验和能力的程度,学生主动参与的程度,教师的教学适应于学生的程度。”它表现为:任何一个学生在所处的情况下发挥最大的潜力,用自己的方法,得到最少的帮助,达到同等的学习目标。 3.学生创新意识和探索精神展示空间。 主要测评学生在学习活动里自学能力结构和合理迁移创造性思维水平。包括:独立阅读数学教材和用已有知识、方法解决新问题,自我组织学习活动和反馈发散与聚合思维统一体,直觉与分析的有机结合,创造性想象的参与。 4.基础知识和基本技能掌握程度。 主要评价学生掌握“双基”的方式是否科学、合理,形成过程是否高效、省时、独立构建知识体的能力。掌握知识应包括四个方面,是什么、哪里找、怎么学、有什么用。不等同于记住或模仿做题。 5.学生运用数学知识解决身边疑难的能力。 主要评价学生从生活中感知数学,收集整理信息中发现、抽象数学规律,用数学眼光观察、解答生活中实际问题。包括:课前收集生活信息,课内交流、整理和操作分析信息,用所获知识再认识和想象创新实践信息。真正体现出:数学来源于生活,数学服务于生活。 学生对数学课的热情程度关键是教师尊重学生的人格。在课堂上尽可能减少教师的规定行为,只要学生是围绕学习的言行,教师都必须给予鼓励;教师应善于发现学生的学习个性,加以引导和发展,避免学习过程公式化;算理溶入生活情境并儿童化,克服单调枯燥。调查数据表明,小学生从喜欢某位教师到喜欢这位教师所教学科,进而在课堂上表现出最佳心理状态。 “教学的最优化就是教师设计的一切活动都能启发学生的思维,用最少的时间和精力获取最大的收获。”教学设计应从贴近学生的生活实例出发,用自己学生最感兴趣的形式,提供学生参与学习过程的材料,保证学生活动的内容和时间。把学什么?怎么学?还给学生,教师可以提供学习材料而不是讲解,是组织原始信息而不是处理加工;应相信每一个学生都能用不同的速度、自己的方法、学好不同水平的数学。教师应鼓励学生独立思考、互助学习、敢于发表新想法和新做法。真正形成开放性课堂,设计开放性问题,学生才能主动参与,培养探索意识、创新意识、实践能力才有可能。小学数学应视为应用数学而不是理论数学,教学时应把抽象的书本内容形象化,枯燥的练习游戏化;让学生用数学思想方法解决身边疑难问题,感受到学数学是生活的需要。变“要我学数学”为“我要学数学”。 实验表明,改变教学评价对象,能促使教师教育理念的转变,引出了备课、上课的一种新模式。更能体现教师是教学过程的组织者、引导者、合作者。综上所述,实施新课程标准小学数学课堂教学评价量化为: 一、教师活动 1.能把握新旧知识的内在联系,通过创设情景,激发学生求知欲。 2.根据重点、难点、疑点有效组织小组合作学习,设计实质性集体学习内容,用正确的数学术语进行学法指导,并渗透数学思想,培养能力。 3.溶入学习小组,进行个别辅导。 4.紧扣目标设计尝试、实践和创新练习进行思维训练。 5.能采用质疑探究,小组交流,集体评价,作业自改互改,抽检等多种方法获得反馈,并及时给予适当的评价。 二、学生活动 (一)自主性学习状态 1.充分动口、动手、动脑,主动收集、交流、加工和处理学习信息。 2.独立思考,掌握学法,大胆实践,并能自评、自检和自改。 (二)合作性学习状态 1.勇于发表自己的意见,听取和尊重别人的意见,实行分工合作,各互其责。 2.争论与和谐统一,有效地进行小组内的互帮互学。 (三)创造性学习状态 多向观察,善于质疑,变式思维,举一反三,灵活实践。 新课程改革已经历了五年多了,教师按照新课程标准倡导的理念,积极地投身到课堂教学的探索之中,使数学课堂充满了激情和活力,让数学教学更显精彩。但在实际课堂教学中,经常碰到这样的情况:当教师抛出问题,让学生小组讨论解决。顿时,满教室是嗡嗡的声音。有的小组你一言我一语,每个人都在张嘴,谁也听不清谁在说什么;有的小组组长一人唱独角戏,其余学生当听众,不作任何补充;有的小组中的学困生则心不在焉地做自己的事;有的小组意见不一致,但在讨论时不是以自己的理由去说服不同意见的同学,而是争吵不休。讨论几分钟之后,反馈交流自己的意见,学生纷纷举起小手一个劲叫:“老师,我!我!我!”待老师叫了一个同学,另外同学则唉声叹气,在一部分学生的唉声叹气中,指名的同学开始发言了:“我是……”“老师,我有不同意见。”没等这同学说完,另一个学生在下面大声叫嚷着。“我也有不同意见,我是……”另外的学生也叫了起来。经这几个同学一闹,下面学生把各自的方法纷纷说开了。整个教室乱哄哄一片。像刚才的例子我还碰到过多次,因而我就想:这样的教学有效吗?整个合作交流的过程表面上热热闹闹,但在热闹背后更多的是放任、随意和低效。交流只是一个表述的过程而缺少倾听的过程,使交流效果大打折扣。我们的课堂现在普遍呈现出的现象就是:“热热闹闹”爱说话,爱表达的学生多。但在活跃的数学课堂中,学生光有表达是不够的,最重要的还是倾听。倾听是获得知识的一种手段,倾听别人的意见也是一种重要的学习技能。有效的倾听能帮助我们博采众长,弥补自己考虑问题的不足;也能使我们触类旁通,萌发灵感;还能使我们养成尊重他人的良好品质。那么,我们如何根据低年级学生的年龄、心理特点,让学生正确表现自己,学会倾听呢?下面简单谈一谈我在数学课堂教学中是如何培养学生倾听能力的。一、培养学生的倾听能力,使学生“会听”。倾听是一种能力,也是一种素质。它作为人的一项基本技能,是可以通过训练得到不断提高与完善的。我在平时的数学教学中,主要通过以下四点来培养学生的倾听能力:⒈ 听辨法。在教学中,我经常把一些易混淆的概念、法则等编成判断题,由教师口述题意,全班学生用手势表示“对”与“错”。如:在学习了长方形、正方形与平行四边形的巩固练习中,我让学生认真听,仔细判断,看谁的耳朵灵:“四个角都是直角,四条边相等的图形是正方形;四个角都是直角,对边相等的图形是长方形;对边相等,对角相等的四边是平形四边形。”通过这些判断练习,一方面可以使学生通过辨别、分析、强化对知识的理解,另一方面迫使每个学生必须认真听才能正确的判断。这在无形中,就加强了学生倾听的能力。⒉ 听算法。计算是数学教学中不可缺少的一部分,在平时的教学中,我尽量做到每天坚持3分钟的口算练习,来提高学生的计算能力。在口算练习中,我不但进行视算练习,还时常穿插听算练习。这样既改变了单调的练习模式,又有利于激发练习的兴趣,同时也逐步提高了学生的听力。通过听算,使学生明白,我们不但要学会算,更要注意听,只有听清楚,才能算正确。⒊ 听说法。低段学生最喜欢的活动方式是在游戏中学习,在教学完有余数的除法后,我设计了这样一个片断:师:我们接下来做一个对口令的游戏,比一比,哪个小朋友对得又对又快,但不能重复。老师报一个余数是1,你能说出一个等于它的算式吗?生1:15÷2=7……1 生2:10÷3=3……1 生3:25÷8=3……1 ……师:说得真多。下面余数是3。生1:15÷4=3……3 生2:27÷6=4……3 生3:33÷5=6……3 ……在这个环节中,学生只有认真地倾听别人的答题之后,才不致于使自己的答案与别人雷同,这样还促使学生不断地思索还有别的答案吗?通过这样的练习,不但课堂气氛活跃了,还激发了全体学生的参与的热情。同时,能使学生静下来耐心听。动中有静,静中有动,多种感官参与学习,大大提高了学习效率。⒋ 转述概括法。“学会倾听”有两层意思,一是要求听别人发言要用心,要细心。另一层意思是要“会听”,要边听边想,思考别人说话的意思,能记住别人讲话的要点。因而在平时教学中,我经常让学生转述概括别人的发言,在倾听别人发言的基础上进行加工。如在小组合作交流时,要求每个学生发言时,先说出前面发言同学说的内容,并对听来的内容进行评价,然后再讲清自己的观点。这样让学生转述别人的发言,逐步学会抓住别人讲话的精髓,达到真正理解的程度;也从中得到启发,达到触类旁通,学会倾听。另外,老师每次布置作业时,只说一遍,要求学生认真听。然后请听得不够专心的同学转述一次。如还不清楚,再请一位同学转述。这样要求学生转述显然很费时,但对于倾听能力的培养却很有帮助。只要我们从低段开始培养学生良好的倾听习惯,对今后的课堂教学就会起到事半功倍的效果,所以应舍的花时间。二、养成倾听的良好习惯,使学生“善听”。人的成长其实就是一些习惯的累积。要发展学生的倾听能力,必须培养学生良好的倾听习惯。那么在课堂教学中,我们如何利用有限的时间培养学生倾听的好习惯呢?⒈ 讲明倾听的重要性。倾听是一种有意识、主动的听。由于学生年龄小、心理发育并不成熟,要让学生明白倾听的重要性,我们不能靠硬性灌输,应在和谐的气氛中渗透。在教学时,我总是抓住机会郑重其事地强调:听与说同样重要。说是表达自己,让别人听明白;听是尊重别人,听懂别人的意思。说要大胆,听要用心;我们不仅敢说,还要会听,这样才是一个好学生。当然,要让学生理解倾听的重要性,不是一两句话就能明白,要靠我们教师耐心的引导,利用平时一切可利用的时机,让学生从体验中领悟倾听的重要性。⒉ 意识倾听的长期性。学会倾听,是一种能力,也是一种习惯;认真听,更是一种好品质,也是对他人的一种尊重,它的养成非一日之功。由于学生年龄小,心理不稳定,理解能力相对较低,要让学生真正学会倾听这就显得困难,这就需要我们在日常教学中做一个有心人,逐步加以细心培养。在平时教学中,我主要要求学生把话听完后,再发表自己的意见,来培养倾听习惯。不管某个学生回答得“对”还是“错”,我都教育学生,让别人把话讲完,才举手发表自己不同的一见解,这才是对别人尊重的表现。同时引导学生进行换位思考。假如你发言时,被别人打断,你会怎么想?让学生设身处地为发言者着想,尊重发言者。要求学生能克制自己的激动情绪,即使对他人的发言有意见,也得等别人把话讲完以后再发表意见。这样既可以满足学生的表达欲望,又力求让每个学生都能发表自己的见解。习惯的养成是一个缓慢的过程,其间还有反复,但我们只要持久有序,长期坚持,是可以实现的。⒊ 发挥教师的示范性。要让学生养成倾听的习惯,不仅是学生的问题,也是教师的任务。学生的许多习惯都能从老师身上找到影子,为了让学生学会倾听,教师在课堂内外要特别注意言传身教。①听懂学生的心声。教师在与学生对话时,无论孩子们的发言是对是错、是流畅还是吞吞吐吐,都要专心地听,偶尔可作提示,但切不可打断学生的发言。教师对待学生发言,首先要看到他的闪光点,努力做到先肯定再指正,以激励为主、批评为辅。②适时恰当地评价学生。小学生的情绪色彩很浓,特别是低年级的学生,常常由于兴奋,不听同学发言而大声说话。这时,我就马上对那些能倾听别人发言并积极举手或回答问题的学生给予表扬:“瞧,XXX今天听得多认真呀!”“大家看,XXX不仅听懂了别人的发言,还加进了自己的想法,多棒呀!”“XXX真厉害,一下子就能听出同学发言的主要意思。”这样,既表扬了认真听的学生,又给其他同学指明了努力的方向。通过以上的尝试,现在我班学生已逐步养成了在课堂上积极发言且能倾听别人意见的习惯;对数学也有了较浓厚的兴趣,学习效率有了一定的提高。这使我进一步明确课堂上自主不等于随意。在提倡个性张扬的现代教育理念下,“尊重、民主、平等”是其中的核心,学会倾听也正是建立在这理念之上的。只有认真倾听他人的发言,才能听懂别人的意思,达到交流的目的。高效的课堂不但要鼓励学生“爱讲”,而且要引导学生“会听”“善听”、“多思”。

如何在数学教育教学中提升学生的数学核心素养进入21世纪,社会进步、科学技术和数学发展异常迅速,甚至超出想象,这势必会影响教育,影响基础教育,影响数学教育。20世纪学生应具备的基本能力与21世纪学生应具备的核心素养一致吗?哪些不一致?这是跨世纪的挑战,也是建立基于核心素养的课程体系的背景。一、正确认识和理解数学核心素养21世纪,我国确定了“立德树人”“以人为本”的教育改革指导思想,强调以课程为载体落实指导思想,进而以高中课程标准修订为突破,探索、积累经验,逐步推广。“以素养立意课程体系”主要是将培养、提升学生的核心素养(通识)、学科核心素养作为课程基本目标,根据每一个学科的特点,把三维目标通过每一个学科的核心素养加以落实,把课程总目标与学科教育有机结合。我国数学教育工作者一直在思考:数学教育应留给学生什么?数学核心素养是具有数学基本特征的适应个人终身发展和社会发展需要的人的关键能力与思维品质。不严格地说,数学核心素养不仅包含外显能力,还包含内在思维品质。数学课标修订组提出了六个核心素养:数学抽象、数学推理、数学建模、直观想象、数学运算、数据分析,它是五大基本能力的延续和深化。数学核心素养是数学课程目标的重要的基本组成部分,每个数学核心素养通过“情境与问题”“知识与技能”“思维与表达”“交流与反思”四个方面表现出来,这四个方面也是描述核心素养水平的四个维度。每一个数学核心素养有自身的独立性,在学习数学的过程中,在发现与提出、分析与解决数学问题和实际问题中,各自在不同的环节发挥不同的作用,但我们更需要强调整体性,六个核心素养是一个有机联系的整体,它们不是两两“不交”的独立素养,而是相互“交着”相互“渗透”的,在直观想象中,蕴含着抽象、推理、模型;在抽象概括中,也离不开直观、推理、模型;在数学建模的过程中,更需要直观、推理、模型交互发挥作用……数学核心素养不是独立于知识、技能、思想、经验之外的“神秘”概念,综合体现出对数学知识的理解、对数学技能方法的掌握、对数学思想的感悟及对数学活动经验的积累。二、基于数学核心素养的数学课程体系基于数学核心素养的数学课程要突出三件事,一是符合数学规律并结构清晰;二是突出数学本质;三是便于转化,转化为数学核心素养。体现选择性的高中数学课程结构不同的学生拥有不同的特长,会选择不同的发展方向,需要有不同水平的数学核心素养,而数学课程标准为不同发展方向的学生设计了不同的课程。必修课程为学生发展提供共同基础,是高中毕业考试的内容要求。选修I课程是供学生选择的课程,必修课程和选修I课程是高考的内容要求。选修Ⅱ课程分为ABCDE五类。这些课程为学生确定发展方向提供引导,为学生展示数学才能提供平台,为学生发展数学兴趣提供选择,为大学自主招生提供参考。学生可以根据自己的志向和大学专业的要求选择学习其中的某些课程。A课程是部分理工类(数学、物理、计算机、精密仪器等)学生可以选择的课程。B课程是经济、社会(数理经济等)和部分理工类(化学、生物、机械等)学生可以选择的课程。C课程是人文类(历史、语言等)学生可以选择的课程。D课程是体育、音乐、美术(艺术)类学生等可以选择的课程。E课程(校本课程)是学校自主开设,供学生自主选择的课程,特别包括大学先修课程(CAP)。体现数学核心素养发展的高中数学内容结构数学有丰富的研究领域、问题和方法,形成了很多特点鲜明、作用不同的数学分支,但数学又是一个有机整体,拥有清晰的结构,从学习的角度来说,更是如此。只有这样,才能更好地提升、发展学生的数学核心素养。根据高中学习特点和需要,高中数学内容将突出三条贯穿始终的内容主线:函数及应用、几何与代数、统计与概率。数学建模与数学探究是另一条贯穿始终的主线。另外,还应将数学文化渗透在高中课程内容中。抓住这些贯穿始终的主线,才能反复感受到抽象、推理(运算)、模型、直观所起的作用,有效地促进学生数学核心素养的提升和发展。体现数学本质的关键问题和主要概念、定理、模型、思想方法、应用在整体认识高中数学内容结构和主线的基础上,需要进一步深入思考支撑主线的关键问题和主要概念、定理、模型、思想方法、应用等。以函数主线为例,首先,抓住以下关键问题:整体、全面认识函数概念;深入理解函数性质——整体性质与局部性质;掌握一批基本函数类;把握函数应用;感悟研究函数思想方法;深入理解主要概念、定理、模型、思想方法、应用等,步步深入,逐步提升数学核心素养。三、基于数学核心素养的数学教学教什么,如何教?这是教师教学的永恒课题。基于数学核心素养的教师数学教学,首先要更新观念。培养并提升核心素养,不能依赖模仿、记忆,更需要理解、感悟,需要主动、自觉,将“学生为本”的理念与教学实际有机结合。整体把握数学课程基于数学核心素养的数学教学,整体理解数学课程是基础。高中数学课程是一个有机整体,要整体理解数学课程性质与理念,整体掌握数学课程目标,特别需要整体感悟数学核心素养,整体认识数学课程内容结构—主线—主题—关键概念、定理、模型、思想方法、应用,整体设计与实施教学。在这一过程中,学生会不断感悟、理解抽象、推理、运算、直观的作用,得到新的数学模型,改进思维品质,扩大应用范围,提升关键能力,改善思维品质。主题(单元)教学基于数学核心素养的数学教学,要求教师能从一节一节的教学中跳出来,以“主题(单元)”作为进行教学的基本教学思考对象。可以以“章”作为单元,如将“三角函数”作为教学设计单元;也可以以数学中的重要主题为教学设计单元,如“距离”或“几何度量关系:距离、角度”等;也可以以数学中通性通法为单元,如“模型与待定系数”等。这是深度学习的核心,也是深度学习的抓手,也是整体把握数学课程的抓手,可突出本质——数学核心素养,有利于教学方式多样化,把“教”与“学”结合起来,促进学生自主学习;有助于提高数学教师专业水平(数学、教育教学理论、实践),这是数学骨干教师的基本功,不是教教材,而是创造性地使用教材教数学。抓住数学本质我国著名数学家华罗庚反复强调:能把书读厚,又能把书读薄,读薄就是抓住本质,抓住重点,抓住本质,才能更好地理解和提升数学核心素养。问题引领——发现、提出问题与分析解决问题在关于数学和数学教育的大讨论中,问及在数学和数学教育中什么最重要时,著名数学家P Harmous 在一篇总结文章中强调“问题是关键”,数学概念、定理、模型和应用都是在解决问题的过程中总结形成的。在数学课程目标中,特别强调发展学生发现、提出问题与分析解决问题的能力,在基于数学核心素养的教学中,这也是关注的重点。创设合适情境创设合适情境是基于数学核心素养教学的另一关注点。首先要对“情境需要”有个全面的认识,包括实际情境、科学情境、数学情境、历史情境。情境选择的基本原则是便于理解学习内容和要完成的任务,循序渐进,进而考虑激发学生的兴趣和热情。掌握学情,加强“会学”指导“授之于鱼,不如授之以渔”是古训,这与学会学习的理念一致,“会学”比“学会”重要。“会学数学”应包括:阅读理解、质疑提问、梳理总结、表达交流。以“数学阅读理解”为例,需要清楚数学语言由数学自然语言、符号语言、图形语言组成,它的特点是准确、清晰、简洁,数学阅读就要会读“数学普通话”“符号”“图形(表格)”。而数学符号、图形又是一个系统,彼此联系,学生不能很快习惯,需要指导,不能太急。数学教师强调“学法指导”,是一个很好的经验,需要坚持、总结、提升。四、基于数学核心素养的数学学习基于数学核心素养的数学学习,应关注以下问题。视野—见识学习数学需要有开阔视野,了解数学的历史,了解数学的发展,了解数学在社会发展中作用,在美国科学委员会写给美国总统的咨询报告中特别强调:“高科技本质上是数学技术”;了解数学在现实生活中的作用,英国研究理事会的评估报告认为,数学研究对英国经济的贡献约占英国所有工作岗位的10%和GDP增加值总额的16%。对优秀学生,教师应引导他们不满足学到数学知识,得到好成绩,还需要好的见识。见识比知识更重要。做题=数学学习?会学—自主以做题取代数学学习,这是数学教育中的突出问题。通过做题巩固学习内容,这是学习数学的重要环节,但仅靠做题有很大的局限性。学习数学也需要理解数学概念、定理、应用,需要理解不同内容之间的联系。做题与做数学是有区别的。做数学,首先要选择问题,进而猜想结论,确定条件,探索解决问题的方法;做题,完全不同,条件和结论是确定的,方法也是学习过的,在锻炼数学素养方面有一定的局限性。积极参与数学建模和数学探究数学建模是对现实问题进行数学抽象,用数学语言表达问题,用数学知识与方法构建模型解决问题的过程。数学探究是围绕某个具体数学问题,开展自主探究、合作研究,并最终解决数学问题的过程。它们是高中阶段数学课程的重要内容。“数学建模活动”和“数学探究活动”主要以课题研究的形式开展。课题研究过程包括选题、开题、做题、结题四个环节,这是促进学生自主学习的一项重要措施,可以让他们经历解决问题的过程。会交流在数学学习为主的阶段,交流很重要。听一遍不如看一遍,看一遍不如讲一遍,讲一遍不如写一遍,很有道理。大学研究生授课的主要方式是让学生报告,导师很容易从报告的过程中判断是否真懂,希望中学教师和学生也能借鉴这种方法——交流。基于数学核心素养的评价是落实的重要措施,尤其是高考评价。如果高考试题、考试等形式不进行改变,这次改革就很难落实。当然,也应循序渐进。数学课标修订组下专门成立了“基于数学核心素养考试命题研究组”,研究需要改进的命题要素和形式。因此,基于数学核心素养评价的命题,要关注以下要素:(1)命题者要整体把握高中数学课程,围绕内容主线—主题(单元)和关键概念、结论、模型、思想方法、应用展开;(2)突出数学本质;(3)创设合适情境,强调发现、提出和分析、解决问题背景,情境包括实际情境、科学情境、数学情境、历史情境;(4)强调开放性、探究性。如何在数学教育中提升学生的数学核心素养,是数学教育工作者面临的新课题。一线数学教师是落实本次高中课程标准修订的关键,希望广大教师注重提升自身数学素养,特别是数学核心素养,关注数学内容、数学教学理论、数学教学实践与数学核心素养的有机结合,直面问题,不断探索,为学生营造良好的数学教育。

关于学数学的论文

说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;)  (一)函数与方程  函数思想,是指用函数的概念和性质去分析问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。  “宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。  函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。  (二)等量代换  等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。  “解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”  等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。  在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。  (三)分类讨论  在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。  引起分类讨论的原因主要是以下几个方面:  ① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。  ② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。  ③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。  另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。  进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。  解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。  (四)数形结合  中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。  数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。  恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。  数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

提问者采纳  检举| 2010-05-20 19:48数学小论文一  关于“0”  0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”  “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。  “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……  爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。  数学小论文二  各门科学的数学化  数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.  同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.  现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.  例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.  又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.  再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.  谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.  还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.  谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.  至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.  我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”  正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.  数学小论文三  数学是什么  什么是数学?有人说:“数学,不就是数的学问吗?”  这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。  历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”  那么,究竟什么是数学呢?  伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。  数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。  纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。  应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。  高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。  体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。  广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。  陈鸿杰         多投一分也行   拜托!!!!!!

巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。

相关百科

热门百科

首页
发表服务