首页

> 学术期刊知识库

首页 学术期刊知识库 问题

火箭推进剂论文格式

发布时间:

火箭推进剂论文格式

火箭推进剂也叫“火箭发射药”。火药的一种。用做火箭喷气发动机的燃料。除满足对所有火药基本要求以外,还要求单位容积和单位质量所产生的热量大,能在尽可能低的压强下正常燃烧,燃烧性能良好,燃烧生成物的平均相对分子质量低,对高空的耐寒性高。有固体和液体两大类。固体推进剂可分为双基推进剂(主要由硝化棉和硝酸酯类增塑剂如硝化甘油等组成)和复合推进剂(主要由可燃剂——粘结剂如聚氨基甲酸酯、聚硫橡胶、聚丁二烯等和氧化剂如硝酸铵、高氯酸铵等组成)。液体推进剂由可燃剂(如液氢、肼类、胺类、硼烷、石油产品等)和氧化剂(如液氧、液氟、过氧化氢、发烟硝酸、四氧化二氮、四硝基甲烷等)组成。火箭推进剂火箭发动机的特点是同时使用两种不同类型的化学物质来支持燃烧反应,产生热排气。这两种化学物质就构成了火箭专家称之为推进剂的东西。这两种化学物质分别是燃料和氧化剂,燃料为火箭提供燃烧的物质以产生热排气,氧化剂为燃烧的过程供氧。我们应该知道所有的燃烧反应都要求有可燃物质和氧来支持。在大气层内有充足的氧气可以支持燃烧,所以汽车和飞机的发动机都不需要携带氧化剂,但火箭既要在大气层中工作,又要在太空飞行,因此必须自带氧来支持燃烧室的燃烧反应。火箭的推进剂根据化学物质的形态不同可分为液体推进剂和固体推进剂。液体推进剂的燃料和氧化剂都是液态的保存在火箭的燃料箱中的。目前较普遍的一种液体推进剂组合是用混肼-50(类似煤油)作燃烧剂,四氧化氮作氧化剂。这种组合剂可在室温下储存,但其燃烧效率比较低。另一种组合是液氢做燃料,液氧做氧化剂。这种组合是当前最有潜力的组合,其燃烧效率很高,但由于液氢和液氧的沸点都很低,所以其保存需要超低温的储存箱,使温度接近绝对零度,在零下二百摄氏度左右,才能保证它们在液态,一旦温度超过沸点液体变成气体,就无法再用作推进剂,由于其比较复杂目前只有美国、俄斯、法国、中国和日本等少数几个国家掌握这种低温液体火箭技术。大多数液体推进剂要求用火花点火开始燃烧。但有些燃料和氧化剂混合时会自动产生化学反应点火燃烧,我们称之为自燃推进剂。使用自燃推进剂的发动机不需要点火系统,而且更加可靠,但这种推进剂几乎可锈蚀所有与之接触的物质,而且含有剧毒。推进剂比较推进剂类型 性能液氢(燃料)液氧(氧化剂)燃烧效率很高多用于航天飞机及运载火箭末级昂贵、不易储存混肼-50(燃料)四氧化二氮(氧化剂)燃烧效率一般多用于中型火箭价格适中、较易储存RP-1高精炼煤油(燃料)液氧(氧化剂)燃烧效率一般多用于火箭第一级价格适中、不易储存肼(燃料)四氧化二氮(氧化剂)燃烧效率一般自燃、多用于卫星价格相对便宜、腐蚀性极强固体推进剂由油灰或橡胶状的可燃材料构成,是燃料和氧化剂的混合体。烧固体推进剂的火箭称为固体火箭。固体火箭的箭体与液体火箭的箭体差别不大,但内部没有推进剂储存箱,而是把整个火箭体的内部从上到下装满固体推进剂。在火箭体的中心有一条窄窄的圆柱形缝隙贯穿推进剂的模芯,该缝隙称为燃烧室,它可使推进剂从上到下均匀燃烧。火箭底部的喷管,将燃烧室的排气导入合适的方向。由于燃烧室是推进剂在中间留出来的缝隙,如果这个缝隙是圆柱形的,当火箭顶端的点火器击发点火后,随着燃烧的继续,燃烧室的表面积开始增大,使得推进剂与推进剂接触的面积增大,每一时间燃烧的推进剂开始增多,产生的推力也相应的加大。因此火箭在最初产生的推力较小,但随着时间的增加,推力逐渐增大,直到燃烧的最后阶段火箭获得最大的推力。考虑一下如果缝隙的形状不同,那它产生推力的效果也会不同。星形开缝在整个加力期间会均匀的产生推力,但推进剂要比圆柱形的燃烧快一些。现在火箭推进剂模芯中开的缝隙形状分为圆柱形、管形、星形、多翼形、十字形等。与液体推进剂相比,固体推进剂最大的优势在于它可以在室温下储存。而且发动机不需要其它复杂的部件,而液体推进剂的发动机要求有专门的设备来控制液体注入燃烧室。当然也正是由于这个原因,使得固体推进剂的燃烧不容易控制,在燃料没有烧完的情况下,很难实现发动机的关闭,因此不具备多次点火的能力。早期的固体火箭基本都是一次燃烧,但随着技术的发展,现在已经出现多次点火的固体火箭。成分详细见:

利用动量守恒定律。火箭在飞行时,燃料和氧化剂在燃烧室中燃烧,背着飞行方向不断地喷出大量速度很大的气体,使火箭在飞行方向上获取很大的动量,从而获得巨大的前进速度。如果飞行的宇宙飞船减速或着陆时,则向其前方喷气使其减速。它不依靠空气的作用,所以可以在空气稀薄的高空或宇宙空间飞行。在现实生活中,我们经常会看到这样的现象,一个充足气的气球拿在手上,突然放手时气体会从气球中喷出来,这时气球就向着相反的方向飞出去,这种运动遵循动量守恒定律,在物理上我们称作为反冲。随着科技的不断发展,科学家们已经发明制造了各种型号的火箭,这些火箭内部构造互不相同而且都相当复杂。

燃料利用率高,无污染,热值高

[国内视点] 中国探月副总设计师:15年内有望将2-3人送上月球 [佚名][2010年11月7日][11]简介:“中国现有的技术和经济实力,已经超过了美国的阿波罗登月时期,15年内,中国完全可以将2-3人送上月球,然后成功返回。”昨日中国工程院院士、国家月球探测工程副总设计师龙乐豪,在回母校华中师大一附中参加60周年校庆时透露。内容:“中国现有的技术和经济实力,已经超过了美国的阿波罗登月时期,15年内,中国完全可以将2-3人送上月球,然后成功返回。”昨日中国工程院院士、国家月球探测工程副总设计师龙乐豪,在回母校华中师大一附中参加60周年校庆时透露。龙乐豪曾主持和参加了5项国家重点工程运载火箭或导弹的研制,其中长征三号甲被誉为“金牌火箭”,至今仍保持100%的飞行成功纪录。他还主持过我国新一代运载火箭发展规划与月球探测工程运……2. [新闻评论] 外媒:中国二次探月是新版太空竞赛 [佚名][2010年10月10日][115]简介:美国媒体在嫦娥二号发射当天即用大量文字和图片报道中国月球探索历程;新加坡《联合早报》将中国的嫦娥二号和西方发射的探月卫星进行了比较,认为嫦娥二号只用112小时便能进入月球轨道,比欧洲和日本探月卫星的速度都要快。内容: 中国绕月探测卫星「嫦娥二号」在飞行180余小时后,在9日上午11时32分正式进入轨道高度为100公里、周期为118分钟的圆形环月「使命轨道」。这代表着,「嫦娥二号」任务已基本取得成功。中国选择在国庆日当天进行嫦娥二号的发射,引起了全球的瞩目。在称赞之声之外,也有外媒称,中国发展航天科技是在进行「国际竞赛」。 赞扬中国航天成就 当中国的嫦娥二号在10月1成功发射,并在此后的几天多次成……3. [国内视点] 中国嫦娥二号卫星成功进入环月轨道 [佚名][2010年10月9日][484]简介:中国“嫦娥二号”卫星第三次近月制动结束,进入预定环月轨道,此时卫星距离月球100公里,绕月周期为118分钟。10月26号,嫦娥二号卫星还将与月球有一次更加亲密的接触,她将把飞行高度下降到距离月球表面只有15公里的地方,对未来中国月球探测器的着陆点进行拍照。内容:(综合讯)中国广播网报道,中国“嫦娥二号”卫星第三次近月制动结束,进入预定环月轨道,此时卫星距离月球100公里,绕月周期为118分钟。 报道指,按照计划,10月26号,嫦娥二号卫星还将与月球有一次更加亲密的接触,她将把飞行高度下降到距离月球表面只有15公里的地方,对未来中国月球探测器的着陆点进行拍照。……4. [国内视点] 嫦娥二号卫星全程测控纪实 [佚名][2010年10月8日][56]简介:当嫦娥二号完成这一系列试验测试后,又将重新回到高度为100公里的环月近圆轨道,在这个轨道上运行半年。在嫦娥二号任务后期,西安中心还将在嫦娥二号上进行相关技术试验,提高测控精度,为我国嫦娥工程和深空探测提供第一手资料。内容:10月1日18时59分57秒,随着一声惊天轰鸣,巨型运载火箭喷射出一团桔红色的烈焰,托举着嫦娥二号卫星拔地而起,直刺苍穹…… 此次嫦娥二号任务中,西安卫星测控中心(简称西安中心)及所属喀什测控站、青岛测控站、厦门测控站以及智利圣地亚哥站将完成卫星在轨寿命期间的全程监测,拉开嫦娥二号征战太空的恢宏序幕。 “嫦娥”升空:快速定轨 “关闭各类信号源、塔上应答机,天线置于等待点。” “功率……5. [国内视点] 嫦娥二号将提前3天进入状态 [佚名][2010年10月8日][21]简介:根据计划,今天嫦娥二号将进行第二次近月制动,卫星将进入一个小时周期的轨道。昨天下午13时30分飞控中心对嫦娥二号实施一次轨道平面机动,提前三天实现了卫星由侧飞到正飞的姿态调整。内容:根据计划,今天嫦娥二号将进行第二次近月制动,卫星将进入一个小时周期的轨道。昨天下午13时30分飞控中心对嫦娥二号实施一次轨道平面机动,提前三天实现了卫星由侧飞到正飞的姿态调整。 卫星轨道当前有一定偏差 第一次近月制动后,北京跟踪与通信技术研究所主任设计师张波介绍说,第一次近月制动出来的各种参数显示,从发动机温度,到速度控制曲线,吻合得都非常好。张波介绍,第一次近月制动后,实际的近月点高度距离……6. [国内视点] 嫦二是全球第127个月球探测器 [佚名][2010年10月8日][486]简介:无论在人造地球卫星,载人航天和空间探测方面,目前水平整体来说处于世界上中等的水平,有一些技术达到了国际水平,但是随着我们国家经济技术的日新月异,从目前的发展趋势来看,我们再经过几十年的奋斗,可以达到国际的先进水平,基本情况是这样的。内容:日前,中国空间技术研究院研究员、航天专家庞之浩就绕月探测工程和嫦娥二号的相关话题与网友进行在线交流。网友问:其他国家的探月工程目前处在那个阶段呢?庞之浩:探月从全世界的角度来看分三大阶段,一个是1958年到1976年,美苏进行太空竞争,探月也是一个重要的领域,这个阶段发射大量的月球探测器,苏联完成了绕月中的绕落回,美国不仅完成了绕落回而且进行了六次载人航天登月,花了250亿美金,但是这之后由于苏联……7. [国内视点] “嫦娥二号”今天进入环月轨道 [佚名][2010年10月6日][30]简介:北京航天飞行控制中心主任朱民才昨日说,由于首次中途轨道修正满足入轨精度要求,嫦娥二号卫星原计划需进行的中途轨道修正再次取消,预计将于今日进入预定环月轨道。内容:(北京综合讯)嫦娥二号中途轨道修正昨日再次取消,今日将进入预定环月轨道。据新华社报道,北京航天飞行控制中心主任朱民才昨日说,由于首次中途轨道修正满足入轨精度要求,嫦娥二号卫星原计划需进行的中途轨道修正再次取消,预计将于今日进入预定环月轨道。朱民才表示,在10月2日实施首次中途轨道修正后,控制非常精准,满足卫星到达近月制动点的精度要求,所以,原计划于此后进行的两次中途修正不再进行。这标志着中……8. [国内视点] 嫦娥二号今日将首次进入环月轨道 [佚名][2010年10月6日][50]简介:今天上午北京航天飞行控制中心将对嫦娥二号卫星进行第一次近月制动,使卫星进入环月椭圆轨道。据介绍,第一次近月制动是一个非常关键的点,“不容许有任何失败,一旦错过就很难补救。”内容:(268, 350, 250, ad_news_detail_new_1, float:left; margin:5px 10px 10px 0px; padding:2px; text-align:center, , );核心提示:今天上午北京航天飞行控制中心将对嫦娥二号卫星进行第一次近月制动,使卫星进入环月椭圆轨道。据介绍,第一次近月制动是一个非常关键的点,“不容许有任何失败,一……9. [国内视点] 嫦娥二号完成首次近月制动 [佚名][2010年10月6日][22]简介:6日上午11点06分,“嫦娥二号”卫星点火,持续33分钟左右,第一次近月制动成功完成。这意味着“嫦娥二号”正式进入12小时的环月轨道,完成飞入太空后迄今为止难度系数最高的这一跳。内容:6日上午11点06分,“嫦娥二号”卫星点火,持续33分钟左右,第一次近月制动成功完成。这意味着“嫦娥二号”正式进入12小时的环月轨道,完成飞入太空后迄今为止难度系数最高的这一跳。此前,有专家分析,“嫦娥二号”的第一次近月制动最为关键,这一动作被五大系统公认为是嫦娥二号在太空中难度系数较高的一次表演,风险极大。据介绍,“嫦娥二号”发动机第一次近月制动持续1940多秒,约33分钟结束。据中……10. [新闻评论] 外媒:「嫦二」令美眼热欧眼馋印眼红 [辛一山][2010年10月5日][206]简介:10月1日18时59分57秒,嫦娥二号的成功升空,不仅在国内成为最热新闻,在国际上也是「传遍街头巷尾」。中国在外太空的成就已不仅限于近地领域,嫦娥二号的成功发射标志着中国提前成为与美俄并列的太空强国。而记者采访了美国国家航空航天局(NASA),除了祝贺中国外,NASA表示在未来可能与我国合作。内容:(联合早报网讯)香港文汇网报道,10月1日18时59分57秒,嫦娥二号的成功升空,不仅在国内成为最热新闻,在国际上也是「传遍街头巷尾」。 美国《福布斯》杂志称,中国在外太空的成就已不仅限于近地领域,嫦娥二号的成功发射标志着中国提前成为与美俄并列的太空强国。而记者采访了美国国家航空航天局(NASA),除了祝贺中国外,NASA表示在未来可能与我国合作。 对于嫦娥二号升空的意义,外媒有着各种各样……11. [新闻评论] 中国正在奔月 美国却在告别月球 [佚名][2010年10月3日][322]简介:嫦娥二号月球探测器1日成功发射升空,由于美国日前刚通过决议要求调整美国宇航局(NASA)未来的方向,短期内或不再进行探月计划,“美国在线”由此报道表示,“中国发射月球探测器时正是美国从月球上回来之时”。内容: 星箭准备点火发射。嫦娥二号月球探测器1日成功发射升空,由于美国日前刚通过决议要求调整美国宇航局(NASA)未来的方向,短期内或不再进行探月计划,“美国在线”由此报道表示,“中国发射月球探测器时正是美国从月球上回来之时”。 报道首先说,中国第二个月球探测器在1号被发射升空,并介绍它将会采集月球表面图像,还会执行未来无人探测器登月地点的考察等工作。报道援引美联社的话称,中国近年来太……12. [学者观点] 毛利卫说嫦娥二号具世界意义 [佚名][2010年10月3日][248]简介:日本“航天第一人”毛利卫对于中国嫦娥二号探月卫星发射成功表示祝贺,并认为这不仅对中国,对世界也具有重要意义。毛利卫是在昨日接受新华社记者蓝建中采访时作上述表示的。内容: 【日本新闻网10月3日消息】日本“航天第一人”毛利卫对于中国嫦娥二号探月卫星发射成功表示祝贺,并认为这不仅对中国,对世界也具有重要意义。毛利卫是在昨日接受新华社记者蓝建中采访时作上述表示的。 报道说,毛利卫是日本首位宇航员,现任日本科学未来馆馆长。他说,日本“月亮女神”绕月探测卫星从2007年9月升空到2009年6月受控撞月……13. [国内视点] 嫦娥二号首幅地月成像照传回 [佚名][2010年10月3日][153]简介:昨晚19时25分星箭分离之后嫦娥二号独自一人在茫茫太空中飞行了一整夜,这一夜嫦娥二号并没休息。今天凌晨3点39分钟左右,经过一系列姿态调整,嫦娥二号卫星用自己身上携带的一部监视相机拍下它的第一幅摄影作品,也就是之前所说的「地月成像」中的对地成像。内容:据中国之声《央广新闻》报道,16个小时之前,四川西昌是我们瞩目的焦点,嫦娥二号卫星在长征三号丙火箭的托举中成功发射。卫星发射之后,跟踪、测控、调整成了重要的接力赛。 卫星发射到现在这16个小时以来,北京航天飞行控制中心一直在实时跟踪监测。测控大厅还是不时响起「跟踪信号正常、遥测信号正常」的声音。记者刚从北京航天飞行控制中心得到的消息,工作人员说,卫星的运行轨道、一切参数都在正常范围内。 昨晚19时……14. [国内视点] 嫦娥二号18时59分57秒发射 [佚名][2010年10月1日][61]简介:据中新网报道,西昌卫星发射中心负责人宣布,嫦娥二号卫星将于1日18时59分57秒发射。当前,火箭推进剂加注进展顺利,各系统状态良好,发射窗口气象条件满足要求。内容:据中新网报道,西昌卫星发射中心负责人宣布,嫦娥二号卫星将于1日18时59分57秒发射。当前,火箭推进剂加注进展顺利,各系统状态良好,发射窗口气象条件满足要求。……15. [新闻评论] 嫦娥二号副总师:探月花费等于修2公里地铁 [佚名][2010年10月1日][212]简介:中国工程院院士、战略导弹与运载火箭技术专家、中国运载火箭技术研究院运载火箭系列总设计师、国家首次月球探测工程副总设计师龙乐豪在启程赴西昌前夕接受《中国经济周刊》独家专访,从航天技术发展的大背景下,讲述中国的登月愿景。内容:[268]={width:350, height:250, containerId:ad_news_detail_new_1, boxStyle:float:left; margin:5px 10px 10px 0px; padding:2px; text-align:center, keyword:, listAll:};if ($(#ad_news_detail_new_1).……16. [国内视点] 嫦娥二号今晚发射 外媒高度关注 [佚名][2010年10月1日][469]简介:嫦娥二号将于10月1日18时59分57秒发射。这是记者从1日上午嫦娥二号发射前举行的气象和海洋水文汇报会上获悉的。 据西昌卫星发射中心气象室高级工程师江晓华介绍,1日11时到15时没有降水,15时到20时有小雨,发射窗口期间有小阵雨,无雷电、无地面大风、无高空大风。「这样的气象条件可以满足嫦娥二号正常发射的需要。」内容: 「嫦娥二号」发射进入倒计时包裹「嫦娥二号」的发射塔架矗立在群山环抱中(9月30日摄)。9月30日9时,托举「嫦娥二号」的长征三号丙火箭进行常规燃料加注,「嫦娥二号」发射进入倒计时。据新华网报道,嫦娥二号将于10月1日18时59分57秒发射。这是记者从1日上午嫦娥二号发射前举行的气象和海洋水文汇报会上获悉的。 据西昌卫星发射中心气象室高级工程师江晓华介绍,1日11时到15时没有降水,15……17. [国内视点] 中国探月卫星于国庆日发射 [佚名][2010年9月30日][32]简介:中国探月工程新闻发言人昨日发布消息,称嫦娥二号卫星和火箭已完成发射场区的测试和检查,测试结果正常,完全满足发射的技术条件,将于10月1日下午6时59分57秒在西昌卫星发射中心发射。如果遇到气候等原因,不能在第一窗口时间发射,还选择了10月2日和3日择机发射。内容:(北京讯)中国“嫦娥二号”探月卫星将于中国国庆日当天、10月1日下午6时59分57秒发射。 中新社报道,中国探月工程新闻发言人昨日发布消息,称嫦娥二号卫星和火箭已完成发射场区的测试和检查,测试结果正常,完全满足发射的技术条件,将于10月1日下午6时59分57秒在西昌卫星发射中心发射。如果遇到气候等原因,不能在第一窗口时间发射,还选择了10月2日和3日择机发射。 “嫦娥二号”是“嫦娥一号”的……

火箭推进论文格式

火箭起源于中国,是我国古代的重大发明之一,早在宋代就发明了火箭,在十三世纪以前,中国的火箭技术在世界上遥遥领先,火箭是热机的一种,工作时燃料的化学能最终转化成火箭机械能.现代火箭用来发射探测仪器,以及人造卫星、宇宙飞船、航天飞机等空间的飞行器.目前各种型号的中国火箭有: 1、长征一号是我国第一枚三级运载火箭.它以两级液体火箭为基础,加固体第三级.固体发动机由固体发动机研究院研制.全箭由中国运载火箭技术研究院技术抓总.箭长29.46m,最大直径2.25m,起飞质量81.5t,起动推力达106 N.二、三级有转接锥壳相连.第三级与第二级完全分离后,起旋火箭点火,使第三级在空中自由起旋.整流罩用水平抛脱.长征一号火箭具有将300 kg的卫星射入倾角为70°、高为440km的圆轨道的运载能力. 1970年4月24日,“长征一号”运载火箭在酒泉发射中心首次发射我国第一颗人造地球卫星“东方红一号”,再次发射把实践一号科学实验卫星送入轨道. “长征一号”的改型,“长征一号丁”,在原一二级基础上,更换三级固体发动机,将使其近地轨道的运载能力达到700kg~750kg. 2、长征二号两级液体运载火箭,全箭长约32m,最大直径3.35m,起飞质量190 t,一级装有4台发动机,地面推力为2.8×106 N,二级主发动机真空推力7.3×105 N,还有4个可以遥控的游动发动机(总推力4.7×104N),能将1.8 t的有效载荷送入近地轨道,1974年11月首次发射,由于一根导线有暗伤,导致飞行试验失败.1975年11月发射返回式遥感卫星准确入轨.接着,又发射两次,均获成功. 随着卫星对火箭运载能力要求的提高,“长征二号”火箭也作了相应的技术状态的修改,使技术性能和运载能力均有所改进和提高.近地轨道运载能力达到2.5 t左右,命名为“长征二号丙”,多次发射均获得成功.发射表明:“长征二号丙”设计方案正确,性能稳定,质量可靠,获得国内外同行的好评. 3、长征二号E即长征二号捆绑火箭,中国运载火箭技术研究院研制的第一枚推力捆绑式(也叫集束式)运载火箭,它是以经过改进的“长征二号丙”火箭作芯级(一级加长4.6 m,二级加长5.2 m)第一级箭体上并联4个长15.3 m,直径2.25 m的液体助推火箭.上面级和卫星都装在直径4.2 m,高10.5 m的整流罩内,全箭长49.7 m,芯级直径3.35 m,芯级一级发动机4机关联,加上4枚助推火箭,总推力为6×106N,可把8.8 t有效载荷送入200 km的圆轨道,1988年底获准研制,只用了18个月的时间,实现了预定目标.1990年7月16日首次发射,一举成功,把一颗巴基斯坦的科学试验卫星和一模拟有效载荷准确送入轨道.用如此短的周期,研制成功一个新型大推力运载火箭,这在我国是史无前例的,在世界航天史上也属罕见,它为我国发展载人航天技术和满足国际卫星发射服务市场的需要奠定了基础.1992年为澳大利亚发射两颗美制第二代通信卫星. 这种火箭,如配以中国的固体推进剂的上面级可将3 t的有效载荷送入同步转移轨道;如配以液氢液氧推进剂上面级,构成“长征二号E/HO”,其同步轨移轨道的运载能力将达到4.8t. 4、长征三号是以“长征二号丙”为原型加氢氧第三级组成的三级运载火箭.由中国运载火箭技术研究院负责总设计和研制第三级,第一、第二级由上海航天局承制,全箭总长44.56 m,起飞质量202 t,起飞推力2.8×106 N,第三级氢氧发动机在高空失重条件下二次启动.其同步转移轨道推力为1.4×年1月29日首次发射,由于第三级发动机二次启动不正常,卫星进入近地轨道运行.经过70个昼夜的奋斗,4月8日再发射,获得圆满成功. 1990年4月7日,“长征三号”为香港卫星通信有限公司成功地发射了亚洲一号通信卫星,标志着中国的长征系列运载火箭开始步入国际卫星发射服务市场. 5、“长征三号甲”“长征三号甲”是为发射新一代通信广播卫星而研制的新型运载火箭.它在“长征二号”运载火箭的基础上,采用了多项先进技术,同步转移运载能力由原来的1.4 t提高到2.5 t,它是一种大型三级液体火箭,全长52.5 m,直径和整流罩均超过长征三号,起飞质量241 t,起飞推力3×106 N,火箭质量近40 t,自1986年2月开始研制,重大技术有30多项,其中火箭的三级推力氢氧发动机,冷氦加温增压系统,动调陀螺四轴平台,低温氢气能源双向摇摆伺服机构等4项技术已属世界一流.我国航天科技工作者倾注8年心血研制的这种运载火箭,至今发射3次,均获成功,巍巍长箭涉三关,在我国航天史上写下一页新的篇章. 首试锋芒送双星.1994年2月8日北京时间下午4时34分,最新研制的“长征三号甲”运载火箭在西昌卫星发射中心点火起飞,将一颗“实践4号”空间探测卫星和一颗模拟卫星送上太空. 前功尽弃经磨难.第二枚“长征三号甲”运载火箭于1994年11月30日凌晨1时2分在西昌卫星中心发射成功,火箭点火升空后,经过24分钟飞行,把我国新一代通信卫星“东方红3号”送入近地点20.58 km,远地点36 220 km的地球同步转移轨道,卫星完成第三次变轨,进入巡航姿态.经过三次变轨后,卫星已在准同步轨道上运行.由于星上姿态控制推力器燃料泄漏,未达到进入同步轨道的目的.1997年5月12日,“长征三号甲”运载火箭第三次发射,成功地将“东方红3号”通信广播卫星送入预定轨道. 6、长征三号乙我国自行研制、目前运载能力最大的新型捆绑式运载火箭“长征三号乙”于1997年8月20日凌晨从西昌卫星发射中心成功地将菲律宾卫星送入轨道,这表明长征系列运载火箭具备了能把5 000 kg有效载荷送入高轨道的能力.这是长征火箭第46次成功发射,也是中国长城工业总公司第12次执行商业发射服务合同. “长征三号乙”火箭全长54838 m,起飞质量426t,可将5000 kg的有效载荷送入倾角为28.5°的地球同步转移轨道,它充分继承了长征系列的芯级除贮箱加长,结构加强及整流罩加大以外,与长征三号甲火箭相同,也具有在真空条件下二次启动能力的氢氧发动机技术和同轴挠性平台等技术.火箭一级周围捆绑的4个助推器,与长二捆火箭完全相同.由于捆绑了助推器,其控制和遥测系统在长三甲的基础上作了相应的修改,是中国长征系列火箭中高轨道运载能力最大的火箭. 马部海卫星是美国劳拉空间系统公司在fs1300平台的基础上设计的三轴稳定地球同步通信卫星,它共有30个C波段转发器和24个KU波段转发器,能向菲律宾、中国和东南亚地区提供语言、图像和数据传输等通信服务.马部海卫星是亚洲地区功率最大的通信卫星,其最大分离质量约3770kg,在轨道寿命超过12年.它将定点在东经144暗某嗟郎峡 .1997年10月17日凌晨3点13分,长征三号乙运载火箭在西昌卫星发射中心又一次发射升空,将亚太二号R通信卫星成功送入预定轨道,远地点47 922 km近地点201 km,倾角24.4º,卫星质量3 700 kg,此次发射是长征系列运载火箭是48次发射. 7、风暴一号是两级运载火箭.由上海航天局研制,火箭长32.6 m,直径3.35 m,起飞推力2.8×106 N,起飞质量191 t,推进剂为四氧化二氮和偏二甲肼.一级发动机由四台可切向摇摆的游动发动机组成,二级发动机由一台主发动机和四台可切向摇摆的游动发动机组成.制导系统采用平台一计算机全惯性系统,姿态控制采用有源网络校正装置,贮箱采用主强度铝合金材料,采用自然增压方案.“风暴一号”可把1 500 kg的有效载荷送入近地轨道. 为了提高运载能力,采用了大幅度减轻结构重量,降低发动机混合比偏差,一级采用耗尽关机.二级主发动开机后采用游动发动机小推力飞行入轨等措施.为了提高轨道精度,采用了速度导引有机结合的制导方法,为了用一枚火箭发射三颗卫星,攻克了结构动力学和多星分离运动学的技术关键. 1975年以来,“风暴一号”先后发射了六颗卫星.它们是三颗科学技术实验卫星和1981年9月20日用一枚“风暴一号”运载火箭成功发射的三颗卫星. 8、长征四号是一种多用途三级常温推进剂运载火箭,具有性能优良,结构可靠,成本低廉,发射场通用,使用方便等特点,由上海航天局研制. “长征四号”采用四氧化二氮和偏二甲肼推进剂,全长41.9 m,改进的一、二级直径为3.35 m,新研制的三级直径为2.9 m,火箭起飞质量249 t,起飞推力3×106N.“长征四号”在总体上进行了优化设计,加长一级推进剂贮箱4 m,加大一级发动机推力2×105N,三级采用两台5×104N推力的发动机,减轻结构设计质量约300 kg,使火箭的运载能力大幅度提高,该火箭运送地球同步转移轨道卫星的运载能力为1 250 kg,运送900 km高度的太阳同步轨道卫星的运载能力为1 650 kg.“长征四号”在国内大型运载火箭上首次应用了数字式姿态控制系统.三子级全程氮气压力值增压输送系统,三子级双向摇摆发动机.无水肼表面张力定箱,三级单层高强度铝薄壁共贮箱等多项先进技术. 1988年9月7日和1990年9月3日,“长征四号”运载火箭两次发射太阳同步轨道“风云一号”气象卫星均获圆满成功.“长征四号”具有两种不同直径的卫星整流罩,可适应不同质量和尺寸的有效载荷,也可一箭多星发射,这为承担多种卫星的发射业务,特别是为发射同步轨道和极地轨道卫星创造了有利的条件. 附: 主要数据 长/m 芯级最大直径/m 起飞推力/N 运载能力/t 轨道/km 长征一号 29.46 2.25 1.04×106 0.3 400 长征二号 32 3.35 2.8×106 1.8 近地 长征二E 49.7 3.35 6×106 8.8 200 长征三号 44.56 3.35 2.8×106 1.4 同步轨道 长三甲 52.5 3.35 3×106 2.5 同步轨道 长三乙 54.848 3.35 5.0 同步轨道 风暴一号 32.6 3.35 2.8×106 4.8 200 长征四号 41.9 3.35 3×106 1.25 同步轨道

2004年1月,我国探月计划“嫦娥1号”工程正式启动,这标志着我国的深空探测进入了实际操作阶段。探月工程将分“绕”、“落”、“回”3个阶段来具体实施。随着我国航天事业的发展,对空间飞行器的定轨精度要求越来越高。目前,我国火箭运载的能力可以确保把总重约吨的飞行器送到约38万公里的地月距离处,但保证其准确进入环月飞行工作轨道则有赖于地面测控系统的精密定轨和轨道预报。经多次反复论证,我国探月工程决定,探月飞行器的测控工作,以我国的联合S波段(USB)测控系统为主,辅以中国科学院的甚长基线射电干涉(VLBI)测量系统进行精密定轨。 本文以我国正在实施的探月计划“嫦娥1号”工程为背景,分析了在我国USB测控网和VLBI跟踪网的现有空间分布、观测弧段和尽可能接近真实情况的误差源等前提下的探月飞行器的精密定轨。“嫦娥1号”的整个飞行过程包括以地球为中心的调相轨道飞行、地月系之间的奔月飞行轨道以及环月轨道的飞行。各轨道段有不同的轨道特征,为此,本文重点分析了影响奔月飞行器和环月飞行器定轨精度的主要误差源,以及观测量精度、观测资料类型等对定轨的影响。在环月阶段,月球重力场误差是影响定轨的最主要的误差源,本文采用减缩动力学法,即采用合适的经验加速度参数吸收重力场误差对定轨的影响。采用的方法是仿真模拟计算,即首先模拟观测数据,然后在计人各误差源的影响后进行求解,并对解算结果进行比较。仿真模拟的工具是美国宇航局哥达德飞行中心的空间数据分析软件系统GEODYNⅡ。 仿真的计算结果表明:采用USB测距、测速和VLBI时延,时延率联合定轨能够提高定轨和轨道预报精度。在奔月阶段,提高观测量精度(时延)和减小测量船的点位误差将有助于提高定轨精度,而在环月阶段,采用减缩动力学方法和提高月球重力场精度将有助于提高定轨精度。

可以去参考参考一下国际航空航天科学,虽然这是针对于学术论文的资料~你但是肯定也是有值得你参考学习的内容的

本文由北京宇航系统工程研究所的李平岐 陈海鹏 洪刚 朱永泉 王建明等共同编撰,发表于《国际太空2017年09期》,以下为文章内容:

对于载人登火任务,若采用常规的化学推进技术,地球出发规模达到1400t,而采用核热推进技术后,地球出发规模可降低至800t。核热推进技术以其高比冲、大推力的独特性能,具有化学推进火箭无法比拟的深空探测优势。

前期火星探测任务表明,火星上具备生命存在的某些必备条件,尤其是水的发现,极大地激发了人类在火星上寻找生命的热情,成为近年来国际深空探测的热点。核热推进技术以其高比冲、大推力的独特性能,具有化学推进技术无法比拟的深空探测优势。而且随着核动力技术的逐步发展,核能源安全问题可以得到可靠解决。为了确保我国在未来深空探测领域能够发挥更大作用,发展核热推进技术具有重大意义。

本文以载人登火任务为背景,对核热推进运载器的总体方案进行了初步研究,对核热推进运载器的总体性能、设计特点以及关键技术进行了初步分析和梳理。

随着人类对火星的了解越来越多,美国国家航空航天局、俄罗斯联邦航天局、欧洲航天局都已开始进行移民火星的科学研究,有望在21世纪30年代中期实现人类登陆火星的梦想。其中,美国国家航空航天局早在1988年就已经开始了载人火星探测的方案研究,并形成了载人登陆火星的“火星参考任务”(DRM)系列方案。

美国《载人火星 探索 设计参考体系》(Mars ),基本确立了“重型运载火箭+核动力末级”的总体方案,其基本方案为采用7发重型火箭将核热推进级、载人/货运有效载荷送至近地轨道,之后在近地轨道分别对接成2发货运火箭和1发载人火箭,由核热推进运送至火星并返回地球。早期,美国载人火星探测方案曾提到过利用传统化学推进系统进行载人登火,地球出发规模高达1400t。核热推进系统的结构与化学火箭发动机类似,推力也大致相当,但比冲提高到900 950s左右,地球出发规模得以降低到800t。Mars 方案总体上采取“人货分运、物先人后”的原则。

美国Mars 载人登火方案

参考美国Mars 方案,我国也开展了初步的载人登火任务规划,按照地球出发规模700 800t考虑,共进行7 8次发射,在近地轨道进行5次对接。

1)由重型运载火箭1将核热推进奔火变轨级1送入近地轨道;

2)由重型运载火箭2将核热推进奔火变轨级2送入近地轨道;

3)由重型运载火箭3将轨道舱1(火星着陆下降器和上升器)送入近地轨道;

4)由重型运载火箭4将轨道舱2(火星表面生活舱和火星车)送入近地轨道;

5)由重型运载火箭5将核热推进奔火变轨级3送入近地轨道;

6)由重型运载火箭6将液氢贮箱送入近地轨道;

7)由重型运载火箭7将载人摆渡航天器(含飞船2)送入近地轨道;

8)由载人火箭将载人飞船1送入近地轨道。

将核热推进奔火变轨级1和轨道舱1在近地轨道对接,由核热推进奔火变轨级1将轨道舱1送入奔火轨道,轨道舱1与奔火变轨级1分离,之后由轨道舱1制动、气动减速将下降器和上升器送入环火轨道,下降器和上升器着陆火星表面;将核热推进奔火变轨级2和轨道舱2在近地轨道对接,由核热推进奔火变轨级2将轨道舱2送入奔火轨道,轨道舱2与奔火变轨级2分离,之后由轨道舱2制动、气动减速将火星表面生活舱和火星车送入环火轨道,等待后续入轨的载人飞船;将热推进奔火变轨级3、液氢贮箱、载人摆渡航天器和载人飞船1依次在近地轨道对接,航天员由载人飞船进入摆渡飞行器,由核热奔火变轨级3(和液氢贮箱)将载人摆渡航天器和载人飞船送入奔火轨道、环火轨道。载人摆渡飞行器和先入轨的火星表面生活舱在环火轨道对接,生活舱与摆渡飞行器其他部分分离,之后生活舱和飞船2降落在火星表面。

完成使命后,航天员通过火星上升级和飞船2进入火星轨道,并与载人摆渡航天器其他部分和载人飞船1进行交会对接。返回地球之前,航天员进入载人飞船1,与摆渡航天器分离,直接再入地球。

核热推进动力系统主要包括核热发动机和增压输送系统两部分组成。目前,国内核热发动机还处于概念设计阶段,核热发动机在原理上与以液氢为工质的膨胀循环发动机类似,不同的是将氢氧燃烧室替换成核反应堆。液氢推进剂从贮箱出来经泵增压后首先进入发动机冷却夹套冷却推力室后气化,之后分为两路:一路直接进入推力室,另一路吹动涡轮后进入推力室。进入推力室的氢气经核反应堆加热之后,变成高温高压气体经喷管高速喷出,形成推力。

核热发动机概念原理图

(1)核热发动机比冲

发动机比冲正比于推进介质温度的开方,反比于分子量的开方。由于材料及传热的限制,燃烧室温度一般不会超过3000 4000K,因此降低分子量是提高比冲的有效途径。

化学燃烧产物的分子量一般都超过10,而核热发动机可以直接将低分子量介质加热至高温,从而产生高比冲。目前而言,核热发动机最好的工作介质是液氢,既有良好的冷却和膨胀做功能力,又是分子量最小的单质。为最大化提高介质温度,核燃料棒技术水平对比冲性能起着决定性作用,是核热发动机最为核心的关键技术,也是我国在核热发动机领域与国外差距较大的技术。

目前,俄罗斯在该领域处于最高水平,其三元碳化物技术可将氢加热到2800K以上,从而实现发动机比冲超过900s。在发动机面积比为300和喷管效率为的情况下,随着氢加热温度的提高,比冲相应发生变化。

(2)核热发动机推质比

核热发动机由于有核反应堆及相关屏蔽层的存在,推质比低于常规的液体火箭发动机,但远大于电推进发动机,美国核热发动机推质比设计值最高达到,一般取在3 4之间。核热发动机推质比取决于与核相关的组件,如反应堆、反射层、屏蔽层、控制机构等,与常规低温发动机相关组件,如推力室、喷管、涡轮泵等质量仅占10%左右。

对于核热发动机的反应堆,构成部分主要由堆芯(含燃料和慢化剂等)、反射层、反应性控制系统、屏蔽以及其他堆内构件组成。

以美国载人登陆火星用的核热发动机反应堆为例,经估算,核反应堆的总质量约3422kg,而发动机推力约,推质比为。再综合考虑发动机喷管、涡轮泵以及推进剂输送管等,实际工程应用中核热发动机推质比在3左右。

(3)核热发动机起动、关机性能

常规火箭发动机的能量来源于推进剂的化学反应,其加速累积和减速释放的过程与推进剂的供应量直接关联,因此可以实现比较快速的起动和关机。

而核热发动机采用核反应堆作为能量来源,其起动关机过程很大程度上取决于反应堆的工作需求和特性,特别是核反应堆在停堆过程中,部分产物的辐射效应还会持续较长时间,需要持续予以冷却。

通过分析美国的核热发动机研制经验,核热火箭发动机的起动关机过程与常规火箭发动机有一定的差异,尤其是在发动机关机后还要维持一个较长时间的冷停堆过程。

对34吨级月球摆渡用核热发动机的起动和关机特性进行了初步分析,该发动机以美国“运载火箭用核发动机”(NERVA)计划研制发展的NRX系列发动机为原型,设计总温2361K,设计室压,真空比冲822s,设计推力下流量为。

1)起动过程。核热火箭发动机的起动过程与常规低温火箭发动机有点类似,但时间要长得多。

起动第一阶段,液氢在贮箱压力作用下流经涡轮泵、推力室、反应堆等,反应堆处于较低功率,该过程大约需要25s,主要作用是将发动机充分预冷,并将反应堆预热。

第二阶段发动机开始加速起动,温度达到额定工况,推力达到额定推力的60%,历时约;

第三阶段是在总温保持不变的情况下,室压增大至额定工况,推力达到100%,历时约。总体来看,核热发动机起动过程历时约52s,扣除发动机预冷时间,也需要约27s,起动过程的平均比冲大约只有600s。

2)关机过程。核热发动机的关机过程基本是起动过程的逆过程,但耗时要更长一些。首先,发动机要先降功率至60%工况。这一过程发动机总温保持不变,室压降低,历时约,此过程发动机比冲不变;而后,发动机在这一状态维持1 3min,主要目的是降低后续冷停堆过程中废热的产生量,以节省推进剂消耗;然后,发动机总温、推力再继续下降到发动机关机,还需要维持一个长时间小流量冷却的废热排放阶段。该34吨级核热发动机的整个关机过程历时约350s。整个关机过程中,发动机平均比冲约为600s。

核热发动机与常规发动机最大的不同就在于发动机关机后还存在一个废热排放的阶段,这主要是由于反应堆停堆后,一些反应产物仍然具有很强的放射性,会释放出废热。以34吨级月球摆渡用核热发动机为例,该过程持续约64h,推力约为134N,比冲约400s,由于持续时间较长,这一过程中液氢消耗需要考虑,同时,这一过程的冷却氢可设计用于发电,为整个飞行器提供一定的电力来源。

核反应堆在运行时将放出γ射线和大量的中子,这些射线和中子将对航天器上的电子元器件和航天员产生危害,因此需要加以屏蔽,将其辐射水平降到许可值以下。对于空间应用的反应堆,由于体积质量的限制较严格,其电子元器件和航天员处于相对集中的位置,可采用阴影屏蔽的方式,将辐射水平保持在较低水平。

对于使用核动力的航天器,一般设计成细长形结构,即仪表舱、人员舱位于一端,核反应堆位于另一端,两端之间为液氢贮箱。

由于中子及γ射线的直线运动特定,且需屏蔽的位置相对集中,需要将屏蔽的区域放在屏蔽块的阴影区。

辐射屏蔽布置示意图

参考大亚湾和秦山核电站大修制定的防护指标,集体剂量不超过600(人·mSv),个人最大剂量不超过15mSv,考虑到核热推进末级受体积质量的限制,其辐射水平可能会略高,假设核热推进系统辐射安全区的允许泄露值小于每天20mSv,此数值已大大超出大亚湾和秦山核电站大修时制订的辐射防护指标要求。

按照火星探测任务周期为3年考虑,并假设上述辐射被火箭电气产品全部吸收,则整个任务周期累计吸收剂量为,在目前的产品水平下,非抗辐射半导体元器件可以承受不小于100J/kg的电离辐射剂量。

可见,火箭电气产品受到的辐射剂量要小于元器件的承受能力,核热推进对电气系统方案并不产生本质影响,但是核热发动机必须具备基本的辐射屏蔽能力,将对外辐射控制到一个可接受的范围内。

对于深空探测任务,复杂的深空辐射环境是航天器面临的主要环境,暴露在地磁层之外的深空环境中充满了高能量的混合空间辐射。

采用核热推进的航天器布置图

根据航天器在深空的飞行阶段可将深空环境分为三部分:

一是从地球飞往其他星球旅途中的空间辐射环境,其主要辐射源是太阳粒子事件和银河宇宙射线;

二是航天器降落星体过程中的空间辐射环境,其主要辐射源为星体磁场俘获的太阳宇宙射线和银河宇宙射线粒子;

三是航天器所降落的星体表面的辐射环境,主要是星体吸收宇宙辐射后所发生的二次辐射。

深空辐射环境引起的危害主要是辐射损伤和单粒子事件,深空辐射环境中充满的高能电子、质子和少量的重离子与航天器材料作用,将引起航天器材料的性能损伤与破坏,其中高能电子对航天器材料产生电离作用、高能质子和重离子对航天器材料产生电离作用和位移作用。

在进行深空探测航天器电气系统设计时,要考虑光热辐射引起的单粒子事件造成计算错误,或改变存储器中的数值等风险,软件设计时需考虑这种情况,采用计算冗余、错误校验等方法进行检测判别,确保箭机计算的正确性。

核热推进上面级的工作环境在大气层以外,不会受到气动载荷的作用,因此其结构方案设计可以不受气动外形限制。以俄罗斯发布的核热动力运载器的概念图为例,运载器的主体承载结构以杆系为主,以此来提高运载器结构效率。而且由于没有整流罩空间的限制,有效载荷结构形式的灵活性更大、空间分布方案更多。

核热推进系统只需要液氢一种工质,因此只需要液氢一种贮箱,不需要另外设置氧化剂贮箱,在结构设计上的约束更少,可以更好地进行结构方案的优化。

但是采用核热发动机后,相比常规发动机将承受更恶劣的高温环境条件,这就需要在结构设计过程中全面考虑发动机附近结构、仪器和电缆等的热防护需求,保证各系统、单机的正常工作。

而且与常规发动机相比,核热发动机结构更加笨重,这就需要增大发动机部分,尤其是反应堆周围的结构强度,同时保证发动机各部件的密封性。

俄罗斯核热动力运载器概念图

参考美国Mars 方案,提出了与美国类似的载人登火初步方案,地球总出发规模约700 ~ 800t,分三次完成地火转移,单次地球出发规模约300吨级。通过分析从停泊轨道分别加速至地球出发能量C3e为8或20km2/s'时的发射效率、工作时间、引力损失以及入轨质量,给出核热推进末级的推力规模以及核热发动机的总体参数建议。

假设停泊轨道为高度200km的近地圆轨道,核.热发动机推质比取3、比冲取905s,考虑引力损失影响,不同推力规模情况下,对核热推进运载器的发射效率情况进行分析,其中,发射效率指扣除核热发动机干重的入轨质量(进入地火转移轨道)与停泊轨道出发质量的比。可以看出,当过载在之间时,其发射效率最高。

在发射效率已经考虑了不同过载的情况下,变轨时间不同带来引力损失影响,具体影响为过载越小,工作时间越长,引力损失越大,但发动机干重较小。按照单次地火转移的出发规模300t考虑,核热推进剂运载器的推力应该在45t左右最佳,结合美国、俄罗斯核热发动机研究情况,建议核热发动机推力按照15t考虑,核热推进运载器按照3机并联。

地球转移发射效率随过载变化情况

核热推进技术以其大推力、高比冲等特点在未来深空探测任务中具有无可比拟的优势,但也应看到,目前距离核热技术的工程应用还有很长的路要走,还需要攻克很多的技术难题。根据目前的基于核热推进的载人登火任务分析,核热推进运载器从地球出发到达火星需要约180天,在火星停留- -段时间后(一个星期至一年半时间不等),核热发动机再点火返回地球,因此推进剂长期贮存时间应至少为半年时间,这对现有液氢长期储存技术的挑战极大。

另外,核热发动机推力高温气氢比热(总温2500K时约为20000kJ/kg K)要远高于传统氢氧发动机的高温燃气比热( 燃气总温3400K,燃气比热3000kJ/kg K左右),导致壁面热流密度高于传统发动机,从而给冷却带来极大困难。

因此,要实现核热推进在载人登火任务中的应用,需重点解决核热反应堆小型化、核热发动机推力室冷却、推进剂长期贮存等重大技术难题。

了解火箭推进剂论文

本文由北京宇航系统工程研究所的李平岐 陈海鹏 洪刚 朱永泉 王建明等共同编撰,发表于《国际太空2017年09期》,以下为文章内容:

对于载人登火任务,若采用常规的化学推进技术,地球出发规模达到1400t,而采用核热推进技术后,地球出发规模可降低至800t。核热推进技术以其高比冲、大推力的独特性能,具有化学推进火箭无法比拟的深空探测优势。

前期火星探测任务表明,火星上具备生命存在的某些必备条件,尤其是水的发现,极大地激发了人类在火星上寻找生命的热情,成为近年来国际深空探测的热点。核热推进技术以其高比冲、大推力的独特性能,具有化学推进技术无法比拟的深空探测优势。而且随着核动力技术的逐步发展,核能源安全问题可以得到可靠解决。为了确保我国在未来深空探测领域能够发挥更大作用,发展核热推进技术具有重大意义。

本文以载人登火任务为背景,对核热推进运载器的总体方案进行了初步研究,对核热推进运载器的总体性能、设计特点以及关键技术进行了初步分析和梳理。

随着人类对火星的了解越来越多,美国国家航空航天局、俄罗斯联邦航天局、欧洲航天局都已开始进行移民火星的科学研究,有望在21世纪30年代中期实现人类登陆火星的梦想。其中,美国国家航空航天局早在1988年就已经开始了载人火星探测的方案研究,并形成了载人登陆火星的“火星参考任务”(DRM)系列方案。

美国《载人火星 探索 设计参考体系》(Mars ),基本确立了“重型运载火箭+核动力末级”的总体方案,其基本方案为采用7发重型火箭将核热推进级、载人/货运有效载荷送至近地轨道,之后在近地轨道分别对接成2发货运火箭和1发载人火箭,由核热推进运送至火星并返回地球。早期,美国载人火星探测方案曾提到过利用传统化学推进系统进行载人登火,地球出发规模高达1400t。核热推进系统的结构与化学火箭发动机类似,推力也大致相当,但比冲提高到900 950s左右,地球出发规模得以降低到800t。Mars 方案总体上采取“人货分运、物先人后”的原则。

美国Mars 载人登火方案

参考美国Mars 方案,我国也开展了初步的载人登火任务规划,按照地球出发规模700 800t考虑,共进行7 8次发射,在近地轨道进行5次对接。

1)由重型运载火箭1将核热推进奔火变轨级1送入近地轨道;

2)由重型运载火箭2将核热推进奔火变轨级2送入近地轨道;

3)由重型运载火箭3将轨道舱1(火星着陆下降器和上升器)送入近地轨道;

4)由重型运载火箭4将轨道舱2(火星表面生活舱和火星车)送入近地轨道;

5)由重型运载火箭5将核热推进奔火变轨级3送入近地轨道;

6)由重型运载火箭6将液氢贮箱送入近地轨道;

7)由重型运载火箭7将载人摆渡航天器(含飞船2)送入近地轨道;

8)由载人火箭将载人飞船1送入近地轨道。

将核热推进奔火变轨级1和轨道舱1在近地轨道对接,由核热推进奔火变轨级1将轨道舱1送入奔火轨道,轨道舱1与奔火变轨级1分离,之后由轨道舱1制动、气动减速将下降器和上升器送入环火轨道,下降器和上升器着陆火星表面;将核热推进奔火变轨级2和轨道舱2在近地轨道对接,由核热推进奔火变轨级2将轨道舱2送入奔火轨道,轨道舱2与奔火变轨级2分离,之后由轨道舱2制动、气动减速将火星表面生活舱和火星车送入环火轨道,等待后续入轨的载人飞船;将热推进奔火变轨级3、液氢贮箱、载人摆渡航天器和载人飞船1依次在近地轨道对接,航天员由载人飞船进入摆渡飞行器,由核热奔火变轨级3(和液氢贮箱)将载人摆渡航天器和载人飞船送入奔火轨道、环火轨道。载人摆渡飞行器和先入轨的火星表面生活舱在环火轨道对接,生活舱与摆渡飞行器其他部分分离,之后生活舱和飞船2降落在火星表面。

完成使命后,航天员通过火星上升级和飞船2进入火星轨道,并与载人摆渡航天器其他部分和载人飞船1进行交会对接。返回地球之前,航天员进入载人飞船1,与摆渡航天器分离,直接再入地球。

核热推进动力系统主要包括核热发动机和增压输送系统两部分组成。目前,国内核热发动机还处于概念设计阶段,核热发动机在原理上与以液氢为工质的膨胀循环发动机类似,不同的是将氢氧燃烧室替换成核反应堆。液氢推进剂从贮箱出来经泵增压后首先进入发动机冷却夹套冷却推力室后气化,之后分为两路:一路直接进入推力室,另一路吹动涡轮后进入推力室。进入推力室的氢气经核反应堆加热之后,变成高温高压气体经喷管高速喷出,形成推力。

核热发动机概念原理图

(1)核热发动机比冲

发动机比冲正比于推进介质温度的开方,反比于分子量的开方。由于材料及传热的限制,燃烧室温度一般不会超过3000 4000K,因此降低分子量是提高比冲的有效途径。

化学燃烧产物的分子量一般都超过10,而核热发动机可以直接将低分子量介质加热至高温,从而产生高比冲。目前而言,核热发动机最好的工作介质是液氢,既有良好的冷却和膨胀做功能力,又是分子量最小的单质。为最大化提高介质温度,核燃料棒技术水平对比冲性能起着决定性作用,是核热发动机最为核心的关键技术,也是我国在核热发动机领域与国外差距较大的技术。

目前,俄罗斯在该领域处于最高水平,其三元碳化物技术可将氢加热到2800K以上,从而实现发动机比冲超过900s。在发动机面积比为300和喷管效率为的情况下,随着氢加热温度的提高,比冲相应发生变化。

(2)核热发动机推质比

核热发动机由于有核反应堆及相关屏蔽层的存在,推质比低于常规的液体火箭发动机,但远大于电推进发动机,美国核热发动机推质比设计值最高达到,一般取在3 4之间。核热发动机推质比取决于与核相关的组件,如反应堆、反射层、屏蔽层、控制机构等,与常规低温发动机相关组件,如推力室、喷管、涡轮泵等质量仅占10%左右。

对于核热发动机的反应堆,构成部分主要由堆芯(含燃料和慢化剂等)、反射层、反应性控制系统、屏蔽以及其他堆内构件组成。

以美国载人登陆火星用的核热发动机反应堆为例,经估算,核反应堆的总质量约3422kg,而发动机推力约,推质比为。再综合考虑发动机喷管、涡轮泵以及推进剂输送管等,实际工程应用中核热发动机推质比在3左右。

(3)核热发动机起动、关机性能

常规火箭发动机的能量来源于推进剂的化学反应,其加速累积和减速释放的过程与推进剂的供应量直接关联,因此可以实现比较快速的起动和关机。

而核热发动机采用核反应堆作为能量来源,其起动关机过程很大程度上取决于反应堆的工作需求和特性,特别是核反应堆在停堆过程中,部分产物的辐射效应还会持续较长时间,需要持续予以冷却。

通过分析美国的核热发动机研制经验,核热火箭发动机的起动关机过程与常规火箭发动机有一定的差异,尤其是在发动机关机后还要维持一个较长时间的冷停堆过程。

对34吨级月球摆渡用核热发动机的起动和关机特性进行了初步分析,该发动机以美国“运载火箭用核发动机”(NERVA)计划研制发展的NRX系列发动机为原型,设计总温2361K,设计室压,真空比冲822s,设计推力下流量为。

1)起动过程。核热火箭发动机的起动过程与常规低温火箭发动机有点类似,但时间要长得多。

起动第一阶段,液氢在贮箱压力作用下流经涡轮泵、推力室、反应堆等,反应堆处于较低功率,该过程大约需要25s,主要作用是将发动机充分预冷,并将反应堆预热。

第二阶段发动机开始加速起动,温度达到额定工况,推力达到额定推力的60%,历时约;

第三阶段是在总温保持不变的情况下,室压增大至额定工况,推力达到100%,历时约。总体来看,核热发动机起动过程历时约52s,扣除发动机预冷时间,也需要约27s,起动过程的平均比冲大约只有600s。

2)关机过程。核热发动机的关机过程基本是起动过程的逆过程,但耗时要更长一些。首先,发动机要先降功率至60%工况。这一过程发动机总温保持不变,室压降低,历时约,此过程发动机比冲不变;而后,发动机在这一状态维持1 3min,主要目的是降低后续冷停堆过程中废热的产生量,以节省推进剂消耗;然后,发动机总温、推力再继续下降到发动机关机,还需要维持一个长时间小流量冷却的废热排放阶段。该34吨级核热发动机的整个关机过程历时约350s。整个关机过程中,发动机平均比冲约为600s。

核热发动机与常规发动机最大的不同就在于发动机关机后还存在一个废热排放的阶段,这主要是由于反应堆停堆后,一些反应产物仍然具有很强的放射性,会释放出废热。以34吨级月球摆渡用核热发动机为例,该过程持续约64h,推力约为134N,比冲约400s,由于持续时间较长,这一过程中液氢消耗需要考虑,同时,这一过程的冷却氢可设计用于发电,为整个飞行器提供一定的电力来源。

核反应堆在运行时将放出γ射线和大量的中子,这些射线和中子将对航天器上的电子元器件和航天员产生危害,因此需要加以屏蔽,将其辐射水平降到许可值以下。对于空间应用的反应堆,由于体积质量的限制较严格,其电子元器件和航天员处于相对集中的位置,可采用阴影屏蔽的方式,将辐射水平保持在较低水平。

对于使用核动力的航天器,一般设计成细长形结构,即仪表舱、人员舱位于一端,核反应堆位于另一端,两端之间为液氢贮箱。

由于中子及γ射线的直线运动特定,且需屏蔽的位置相对集中,需要将屏蔽的区域放在屏蔽块的阴影区。

辐射屏蔽布置示意图

参考大亚湾和秦山核电站大修制定的防护指标,集体剂量不超过600(人·mSv),个人最大剂量不超过15mSv,考虑到核热推进末级受体积质量的限制,其辐射水平可能会略高,假设核热推进系统辐射安全区的允许泄露值小于每天20mSv,此数值已大大超出大亚湾和秦山核电站大修时制订的辐射防护指标要求。

按照火星探测任务周期为3年考虑,并假设上述辐射被火箭电气产品全部吸收,则整个任务周期累计吸收剂量为,在目前的产品水平下,非抗辐射半导体元器件可以承受不小于100J/kg的电离辐射剂量。

可见,火箭电气产品受到的辐射剂量要小于元器件的承受能力,核热推进对电气系统方案并不产生本质影响,但是核热发动机必须具备基本的辐射屏蔽能力,将对外辐射控制到一个可接受的范围内。

对于深空探测任务,复杂的深空辐射环境是航天器面临的主要环境,暴露在地磁层之外的深空环境中充满了高能量的混合空间辐射。

采用核热推进的航天器布置图

根据航天器在深空的飞行阶段可将深空环境分为三部分:

一是从地球飞往其他星球旅途中的空间辐射环境,其主要辐射源是太阳粒子事件和银河宇宙射线;

二是航天器降落星体过程中的空间辐射环境,其主要辐射源为星体磁场俘获的太阳宇宙射线和银河宇宙射线粒子;

三是航天器所降落的星体表面的辐射环境,主要是星体吸收宇宙辐射后所发生的二次辐射。

深空辐射环境引起的危害主要是辐射损伤和单粒子事件,深空辐射环境中充满的高能电子、质子和少量的重离子与航天器材料作用,将引起航天器材料的性能损伤与破坏,其中高能电子对航天器材料产生电离作用、高能质子和重离子对航天器材料产生电离作用和位移作用。

在进行深空探测航天器电气系统设计时,要考虑光热辐射引起的单粒子事件造成计算错误,或改变存储器中的数值等风险,软件设计时需考虑这种情况,采用计算冗余、错误校验等方法进行检测判别,确保箭机计算的正确性。

核热推进上面级的工作环境在大气层以外,不会受到气动载荷的作用,因此其结构方案设计可以不受气动外形限制。以俄罗斯发布的核热动力运载器的概念图为例,运载器的主体承载结构以杆系为主,以此来提高运载器结构效率。而且由于没有整流罩空间的限制,有效载荷结构形式的灵活性更大、空间分布方案更多。

核热推进系统只需要液氢一种工质,因此只需要液氢一种贮箱,不需要另外设置氧化剂贮箱,在结构设计上的约束更少,可以更好地进行结构方案的优化。

但是采用核热发动机后,相比常规发动机将承受更恶劣的高温环境条件,这就需要在结构设计过程中全面考虑发动机附近结构、仪器和电缆等的热防护需求,保证各系统、单机的正常工作。

而且与常规发动机相比,核热发动机结构更加笨重,这就需要增大发动机部分,尤其是反应堆周围的结构强度,同时保证发动机各部件的密封性。

俄罗斯核热动力运载器概念图

参考美国Mars 方案,提出了与美国类似的载人登火初步方案,地球总出发规模约700 ~ 800t,分三次完成地火转移,单次地球出发规模约300吨级。通过分析从停泊轨道分别加速至地球出发能量C3e为8或20km2/s'时的发射效率、工作时间、引力损失以及入轨质量,给出核热推进末级的推力规模以及核热发动机的总体参数建议。

假设停泊轨道为高度200km的近地圆轨道,核.热发动机推质比取3、比冲取905s,考虑引力损失影响,不同推力规模情况下,对核热推进运载器的发射效率情况进行分析,其中,发射效率指扣除核热发动机干重的入轨质量(进入地火转移轨道)与停泊轨道出发质量的比。可以看出,当过载在之间时,其发射效率最高。

在发射效率已经考虑了不同过载的情况下,变轨时间不同带来引力损失影响,具体影响为过载越小,工作时间越长,引力损失越大,但发动机干重较小。按照单次地火转移的出发规模300t考虑,核热推进剂运载器的推力应该在45t左右最佳,结合美国、俄罗斯核热发动机研究情况,建议核热发动机推力按照15t考虑,核热推进运载器按照3机并联。

地球转移发射效率随过载变化情况

核热推进技术以其大推力、高比冲等特点在未来深空探测任务中具有无可比拟的优势,但也应看到,目前距离核热技术的工程应用还有很长的路要走,还需要攻克很多的技术难题。根据目前的基于核热推进的载人登火任务分析,核热推进运载器从地球出发到达火星需要约180天,在火星停留- -段时间后(一个星期至一年半时间不等),核热发动机再点火返回地球,因此推进剂长期贮存时间应至少为半年时间,这对现有液氢长期储存技术的挑战极大。

另外,核热发动机推力高温气氢比热(总温2500K时约为20000kJ/kg K)要远高于传统氢氧发动机的高温燃气比热( 燃气总温3400K,燃气比热3000kJ/kg K左右),导致壁面热流密度高于传统发动机,从而给冷却带来极大困难。

因此,要实现核热推进在载人登火任务中的应用,需重点解决核热反应堆小型化、核热发动机推力室冷却、推进剂长期贮存等重大技术难题。

从古到今,不知有多少人仰望着天空的闪烁繁星,向往着到天上去看一看,渴望 了解这宇宙的奥秘。现在,人造地球卫星在天空中与群星争艳,宇宙飞船也已将人送 上了月球,过去的梦想已经成为辉煌的现实。但是你们可知道,是靠着什么力量才能 将他们送入太空呢?这就是太空航行的唯一工具——火箭。 所谓火箭,精确地说,是依据牛顿力学第三定律,利用自身向后高速喷出的气流 而获得高速度前进的运载工具。中华民族祖先远在古代就发明了火箭的原始雏形。 根据南宋诗人杨万里在《海鳅赋后序》中的记载,中国至少在十二世纪中叶就已 掌握了火箭技术,那时它的名称叫火箭炮,是一种威力巨大的军事武器。据《金史》 记载,蒙古和金国之间的开封府战役(1223年)大量使用了飞龙枪,这是被广泛承认的 火箭始祖。更有大量的文献记载,蒙古军队西征时亦大量使用了火箭武器,使西方人 无可抵挡。西方人虽然战败,但从此学会了火药、火箭技术,从此进入新的文明时期。 宋代以后,中国的火箭断断续续地发展,如明代戚继光素重火器之用,明末《武 备志》一书更是集火箭技术之大成。但是火箭的制造原理和技术并无太多进步,对火 药的原理也同样不清晰,仍局限于用阴阳五行说来解释爆炸原理。相反,在西方火药 和火箭却得到迅速的研究和发展,促进了科学的进步,从而能制造出更强有力的火箭。 十九世纪初英国的康格雷夫设计了多种杀伤力极强的火箭用于战争,使各国纷纷重视 火箭的研究和使用。一时间火箭与大炮并重,后来由于大炮运用来福线后精度大为提 高,致使火箭作为武器备受冷落而停止发展。 但新的科技思想在慢慢形成。运用火箭作为宇宙航行基本运载工具的想法在先驱 者脑中酝酿。先后有三位科学家详细探索了火箭作为空间运载工具的可能性。这三位 勇敢的人是俄国的齐奥尔科夫斯基、美国的罗伯特·戈达德和罗马尼亚的赫尔曼·奥 伯特。伟大的先驱者齐奥尔科夫斯基生于1857年 9月17日。他的家乡在离莫斯科不远的卢加卡小镇。 他的父亲是一个守林人,家境贫寒,他在 2岁的时候就因猩红热而两耳失聪。虽然他 不能进一般的学校,但他的母亲玛丽亚·伊凡诺娃,在他 7岁时就教他读书。少年的 齐奥尔科夫斯基博览群书,又对数学和物理最感兴趣,有一段时间他热衷于飞行试验。 在他的自传中他写道:“我对热气球十分感兴趣,我甚至收集相当多的数据来计算由 金属框架制成的热气球的必要容量,以便能载人在空中飞行。从那时起我一直沉迷于 金属热气球中。”那时他才14岁。 1873年他的父亲送他去莫斯科著名的技术学院注册。虽然他没能通过入学考试, 但他留在莫斯科勤奋自学。三年多的时间里他频繁光顾公共图书馆,学习他所能获得 的所有数学、物理知识。1876年应父亲的要求,他回到了家乡,以做家庭教师为生, 但这个时候他已经钻研牛顿的运动定律了。 闲暇之时,齐奥尔科夫斯基制造各种各样的机械,甚至在他的家里开设了一个作 坊。这期间他写了两本理论著作,并因此被选入圣彼得堡物理化学学会。在《空虚空 间》一书中,他再次回到年轻时让他着迷的飞行问题。1903年在《用反作用装置探索 宇宙空间》一书中,他第一次阐述了火箭理论和液体燃料发动机的构想,并展望了宇 宙航行的前景。 齐奥尔科夫斯基是第一个提出使用液体燃料作火箭推进剂的人。他设想把液氢和 液氧分别贮存在两个舱中,作为燃料在燃烧室中产生反应,使生成的高热气体通过导 管从尾端高速喷出。宇航员将在舱中生活工作。火箭还设有喷气摩擦栓以调整火箭的 运行方向。 齐奥尔科夫斯基的设想具有切实的实用性。美国发射阿波罗飞船的火箭“土星V” 就是用的液氢、液氧推进剂。其实,他还提出了多种可供选择的燃料,如汽油、煤油、 酒精等。他提出了利用推进剂混合阀门来控制进入燃烧室的推进剂流量的设想,也指 出了可以用液体推进剂流过燃烧室和喷管的双重壳体来使其冷却的方法。在他的笔记 和著作中,还有许许多多奇异的设想,后来的研究者们总能从中得到许多启发。 他考虑了宇航员的生命保障问题,如二氧化碳的吸收问题。他还认真对待火箭离 开地面时巨大的加速度对宇航员的影响。为了抵御太空的高温和严寒,他提出飞船的 壳体应采用双层结构,并且可以防止陨石的袭击。 作为宇宙航行的先驱者,他试图用火箭作为航行工具。为此他计算了将一个物体 送入地球轨道的最小速度(第一宇宙速度)和使其脱离地球的最小速度(第二宇宙速度)。 他正确指出,要达到这种高速度,唯一切实可行的办法是使用多级火箭,也就是他所 称的“火箭列车”。 齐奥尔科夫斯基是认识到环绕地球轨道飞行的地球卫星和空间站可能实现的第一 人。在1911年一封给朋友的信中他写道:“人类不会永远呆在地球上,通过探索光和 空间,我们将会——起初可能有些小心翼翼,但终究会冲出大气层的界限而征服整个 太阳系。”这句话后来铭刻在他的墓碑上。 齐奥尔科夫斯基死于1935年 9月19日,终年78岁。他成就巨大,留下的著作给后 来者以充分启发,可以说现代火箭的产生奠基于他的构想之上。因此,他是当之无愧 的现代火箭之父。他的一生大部分时间却处于困境之中。他的天才构想被同时代的人 视为胡思乱想,或者是荒诞的科幻小说,得不到沙皇政府的资助来从事实验研究。但 是齐奥尔科夫斯基却能够忍受这一切,忍受身体的折磨,忍受他人的讥刺与冷漠,以 一颗不倦求知的伟大心灵,顽强地走自己的路。十月革命以后,苏联政府承认了齐奥 尔科夫斯基的伟大工作,并于1932年授予他劳动红旗勋章。在他的家乡,他曾经居住 的小木屋正成为一座博物馆。前苏联科学院还以他的名字颁布一种奖章,用来奖励那 些在星际航行领域中做出突出贡献的人。 在齐奥尔科夫斯基之后,美国人戈达德在他17岁的时候就向往火星之旅了。十年 以后戈达德认识到,唯一能达到这个目的的运载工具就是火箭。从那时起,他就决定 将自己献身于火箭事业。 但他的一生却是孤独而不被人理解的。在当时的美国,飞机刚刚开始被人接受, 设想火箭这一更为深远的产物就难免要遭到人们嗤之以鼻了。勇敢的戈达德毫不气馁, 在理论和实践上做了很多工作,向怀疑他的设想的人们表明未来的整个航天事业都将 建基于火箭技术之上。他也因此而当之无愧地被称为“现代火箭之父”。 童年的时候,戈达德就显示出对科学幻想和机械的特殊兴趣和能力。那时候他常 迷恋于威尔士的科幻小说,如《星球大战》等,也醉心于阅读凡尔纳的《从地球到月 球》等作品。在他的自传中,他承认这些小说大大激发了他的热情和想象。他认为, 这些小说“完全抓住了我的想象力。威尔士的奇妙的真实的心理描写使事情变得十分 生动,而其所提出的面对奇迹的可能途径总是让我想个不停”。 戈达德生于1882年10月 5日,24岁从渥切斯特技术学院毕业后进入克拉克大学攻 读博士学位。这两所院校都在他的家乡马萨诸塞州。1911年他取得博士学位后留校任 教。在此期间,他认识到液氢和液氧是理想的火箭推进剂,在随后的几年里,他进一 步确信用他的方法一定会把人送入太空。 戈达德的研究极端缺少经费,而且挑剔的舆论界也不放过这位严谨的教授。《纽 约时报》的记者们嘲笑他甚至连高中的基本物理常识都不懂,而整天幻想着去月球旅 行。他们称戈达德为“月亮人”。为新闻界左右的公众也对这位科学家的工作表示怀 疑和不理解,但这都不能撼动顽强的戈达德。最好的办法是走自己的路,继续自己的 研究,而对公众的反应保持沉默,因为他很清楚这种讥讽是不会持久的。这时他的研 究也取得了重大进展。1926年 3月16日,在马萨诸塞州的奥本,冰雪覆盖的草原上, 戈达德发射了人类历史上第一枚液体火箭。火箭长约米,发射时重量为公斤, 空重为公斤。飞行延续了约秒,最大高度为米,飞行距离为56米。这是一 次了不起的成功,它的意义正如戈达德所说:“昨日的梦的确是今天的希望,也将是 明天的现实。” 报界的注意力再次集中到他身上,至少这次有些赞扬的话语了。意想不到的是报 界的报导引起了美国航空界先驱人物之一林白的注意。在亲自考察了戈达德的试验和 计划之后,他立即设法从格根海姆基金会为戈达德筹得 5万美元。这对于极端缺少资 金而又迫切需要进行实验设计的戈达德真是雪中送炭。这时马萨诸塞州对于戈达德的 计划就显得太拥挤了,于是在1930年他的全家和四个助手迁到新墨西哥州的罗斯威尔 建立他的发射场。到1941年,除了短暂的中断之外,他在这里从事了在科技史上最令 人瞩目的个人研究计划。 戈达德的研究终于受到政府的重视。在他于1941年 8月10日死后,他获得的荣誉 达到了顶峰。他被追授了第一枚刘易斯·希尔航天勋章,而国家宇航总局的一个主要 基地以他的名字命名为戈达德航天中心。在1960年,美国政府授予格根海姆基金会和 戈达德夫人100万美元,以酬付政府所利用的200多项戈达德的专利。 戈达德的一生是坎坷而英勇的一生。他所留下的报告、文章和大量笔记是一笔巨 大的财富。对于他的工作,冯·布劳恩曾这样评价过:“在火箭发展史上,戈达德博 士是无所匹敌的,在液体火箭的设计、建造和发射上,他走在了每一个人的前面,而 正是液体火箭铺平了探索空间的道路。当戈达德在完成他那些最伟大的工作的时候, 我们这些火箭和空间事业上的后来者,才仅仅开始蹒跚学步。” 晚于戈达德12年的赫尔曼·奥伯特于1894年 6月25日出生于特兰西瓦亚,该地当 时属奥匈帝国,现在位于罗马尼亚境内。在他12岁的时候,就因凡尔纳的《从地球到 月球》的影响而迷上了星际旅行。1913年他到慕尼黑学医学,但第一次世界大战中断 了他的学业。 从1919年开始,奥伯特认真钻研物理,他阅读了所有他能找到的关于火箭和宇宙 航行的著作,其中包括齐奥尔科夫斯基的著作。1922年他向海德堡大学提交了题为《 飞往宇宙空间的火箭》的论文。虽然有粗糙的科学数据来显示其可能性,但论文被断 定是不切实际的。 从1924年到1938年,奥伯特在特兰西瓦亚的一所中学里教数学和物理。但他对火 箭的兴趣没有丝毫减退。当时有一部电影《月宫女郎》需要一架火箭,为此导演找到 奥伯特,希望他能制作一个。虽然这个计划最终没有完成,但它却激发起了一批天才 人物的想象力。1927年,一批热情的支持者成立了宇航协会。 协会在布雷斯劳的一家啤酒店里召开了具有历史意义的第一次会议。会议的宗旨 是要开展震惊世界的火箭研制工作,而协会本身则成了培养打开宇宙大门的人才的基 地。协会人才济济,第一任会长是谦虚诚恳的温克勒,还有克里斯·里迪尔。年轻的 天才冯·布劳恩在其18岁的时候也加入了该协会。 宇航协会的成员们在设备十分简陋的情况下开始了他们的火箭研究工作。早期的 试验很粗糙,也带有一定的危险性。冯·布劳恩曾对他们早期的一次发射有所描述: “里迪尔担当了这个颇有危险的任务,即把泡在水桶中的小喷管点燃。在火箭的冲力 达不到的地方设置了一个挡板,里迪尔需要把一块浸过汽油点燃后的布片扔到喷着气 体的锥形喷管上去。接着在发动机发出震耳的怒吼声前,就迅速隐蔽在挡板之后。这 需要相当的敏捷,但是对于里迪尔这样一位超过 196磅的大个子来说,他当时表现出 的敏捷简直是奇迹。” 火箭发射成功也是一个奇迹。1930年 8月,奥伯特成功地运转了他的锥形喷管发 动机。此后,协会致力于建造一枚最小型火箭,它被称为“米拉克”。米拉克并没让 人满意,协会会员于是设计了一系列“推力器式”火箭。1931年 5月,推力器式火箭 试飞成功。火箭升高61米,飞行距离为610米。 尽管获得这些成功,宇航协会的火箭飞行场却面临被关闭的危险。当时的德国陷 入经济萧条,协会成员的境遇也一落千丈。能使火箭研究得以继续的唯一出路就是依 靠军方的雄厚资本和独到条件,而陆军当局出于战争上的考虑对火箭表现出相当的兴 趣。从此,火箭研究逐步转于陆军控制之下,而宇航协会也就逐渐瓦解了。 奥伯特的工作并没有结束。虽然他没有直接参与发展后来的 A-4火箭发动机,也 就是著名的V-2火箭,但A-4火箭却完全是以他的理论框架为基础的。战后,奥伯特留 在德国,并回到他的家乡住了一段时间。1951年,他离开德国到美国与布劳恩合作, 共同为美国空间规划努力。这期间他写了两本书,一本是对十年内火箭发展的可能性 作出展望,另一本谈到了人类登月往返的可能性。1960年奥伯特退休后回到德国,大 部分时间用来思考哲学问题,这也许是许多德国科学家的习惯。奥伯特于1989年12月 去世,享年95岁。 奥伯特的主要贡献是理论上的。他建立了下列条件之间的理论关系:燃料消耗、 燃气消耗速度、火箭速度、发射阶段重力作用、飞行延续时间和飞行距离等。这些关 系对于火箭的设计是最基本的因素。 上面讲到A-4火箭发动机主要是奥伯特的构想,其中95%以上的发明和技术构造都 出自他的想法。A-4 是第一个现代意义上的、可操作的火箭,对后来所发展的大型运 载火箭有直接的影响。冯·布劳恩评价道:“(奥伯特)从星际飞行的可能性想法出发, 得出他的简单规则,并能将研究课题和抽象概念转化为数学计算。” 更多地作为一个理论家,而不是一个实验家,奥伯特影响了整整一代工程师。作 为航天事业的奠基人之一,他受到的称赞是当之无愧的。现代火箭的迅速发展 现代火箭发展的开端源于德国。宇航协会解体后,在德国陆军协会资助下,冯· 布劳恩潜心于火箭研究。一开始他只有一名技师做助手,实验室也很简陋,但随着他 的研究成果的增多,条件亦逐渐改善。 布劳恩研制的一系列火箭中的第一种是 A-1。它采用再生冷却式火秀发动机,用 酒精和液氧作推进剂,但在一系列试验中因点火延迟导致发动机爆炸而失败。布劳恩 全面修改了 A-1方案,拿出新的A-2方案。两枚改进后的A-2火箭于1934年12月从北海 中的博尔库姆岛上发射,飞行高度达公里。 A-2的成功导致了A-3的问世。新的火箭第一次配备了陀螺控制的排气舵和气动稳 定舵等,这些改进使火箭发射不必再利用发射平台,而可以依靠尾翼竖立发射。 布劳恩的研究小组迅速扩大,原宇航协会的一批老成员也加入了他的研究计划。 陆军当局要求制造能用于实战的火箭,布劳恩小组便着手研制A-5。他们不用A-4的称 号,因为他们正酝酿着一个宏伟的计划。不带制导系统的 A-5火箭于1938年夏首次发 射,第一枚全陀螺制导的 A-5火箭于1939年秋发射成功。这时正值第二次世界大战爆 发,在不安定的世界又引起了一次强烈反响。 A-5的杰出成就开辟了研究火炮火箭——A-4的道路,这也是陆军所要求的。其最 初技术指标是火箭能飞行 275公里,携带一吨重的弹头。但火箭的大小必须限制在能 通过欧洲的标准隧道这一要求之内,这实际上成了决定火箭性能的主要因素。当时并 没有用这种火箭作为进攻伦敦的武器的计划,只是由于希特勒的狂妄才使它派上如此 用场。 A-4发动机采用液氧——酒精推动剂,推力高达25吨。A-4的前两次试飞都以发动 机爆炸而告终,但于1942年10月 3日进行的第三次试飞却获得惊人的成功。火箭升高 至85公里,射程为 190公里。在现场的军方负责人多恩贝格将军兴奋地对布劳恩说: “你知道我们今天完成的工作有什么意义吗?今天,宇宙飞船诞生了。” 多恩贝格是个有眼光的将军,这在当时的德国军界是难得的。他的论断是正确的, A-4奠基了现代火箭的模型。也正是这样的火箭将人造卫星和宇宙飞船送上太空。 在V-2飞弹,也就是A-4火箭大规模袭击伦敦的时候,布劳恩的小组仍在继续向前 走。他们提出的 A-9/A-10计划,是利用A-10火箭作助推器,来使具有飞机机翼的A-9 火箭在高空大气层中飞行5000公里。这可以使导弹从法国西部的发射场直接攻击美国 大西洋沿岸的目标。但是让设计者们感兴趣的是用这种火箭作为探索外层空间的工具。 布劳恩说:“只要稍微改进一下质量比,使用更好的推进剂,我们就有可能轻易地把 A-9火箭的驾驶员射入一条绕地球运行的永久卫星轨道上去。” 但这一切在当时的德国是不可能实现的,甚至连这样的建议也是不允许的。战争 剥夺了自由发展的权利,虽然有时战争也会加速某些项目的开发,但首要的是为军事 目的,是为了人类之间的互相残杀而发展的。 德国战败后,美苏两国分享了德国的火箭技术。在美军到达火箭发射场之前,美 国特工人员就已经同布劳恩取得联系,达成了协议,让这批专家平安地到达美国。这 样,美国得到了100多名第一流的德国专家和全部的A-4资料和少量 V-2零件;而由于 苏军的迅速进攻,也使苏联得到了大量的 V-2飞弹及其零件,以及一部分二流专家。 出于政治和军事上的需要,两国都迅速在A-4的基础上将火箭技术继续向前推进。 苏联很早就开始了火箭的研制工作。在苏联,太空活动是同科罗廖夫这个光辉的 名字紧紧联系在一起的。每项重大事件的背后,都有着科罗廖天的心血。如第一次成 功发射人造地球卫星“旅行者 1号”、月球背面的第一张照片、第一次载人飞行、第 一次太空漫步,甚至第一名女宇航员上天等等,这些人类历史上杰出的成就这么紧密 地和他联系在一起,他是多么了不起啊! 科罗廖夫生于1907年 1月12日。少年时代迷恋于飞行和空中格斗,但在1930年他 离开了飞行学校,而将全部身心献给了火箭。从1932年始,科罗廖夫领导着莫斯科的 火箭推动原理研究小组,从事火箭研制工作。1933年8月17日,他们成功地发射了GIR D-09火箭,推动剂为液氧和胶状汽油。第一枚全液体火箭GIRD-X于1933年11月25日发 射成功,飞行高度约为80米,飞行 150米。这些早期的试验奠定了苏联火箭发展的道 路。 二战期间,科罗廖夫主要的工作是改进战斗机性能。他将火箭发动机装在飞机上, 也就是现在的喷气式战斗机,这样大大提高了飞机的速度和适应性。 战后,他受命研制远程战略导弹。1948年进行了第一次试验,但一直到1957年, 第一枚两级式洲际导弹才试验成功。这在军事上的直接意义就是核弹头现在可以在20 分钟内打到美国的任何一个地方。只是在两年之后美国才拥有了这种能力。 洲际导弹的成功带来了另一个更加深远的影响。实际上,在研制洲际导弹的同时, 计划向地球轨道发射卫星的工作也在进行着。如此,苏联才能很快于1957年10月 4日 发射了第一颗人造地球卫星。 洲际导弹的核心部分是RD-107和RD-108火箭发动机。他们使用液氧和煤油作为推 进剂,每个发动机有四个燃烧室。发射卫星的火箭是由一个RD-108主发动机和四个RD -107助推器组成的。 当然,科罗廖夫的梦想并不仅仅是一颗卫星,他要实现载人飞行。在尤里·加加 林升空的前一天晚上,总设计师科罗廖夫和加加林并肩站着,望着宁静的太空默默无 语。最后,科罗廖夫紧紧握住加加林的手说:“你真幸运,你将从那么高的地方观察 美丽的地球。” 1961年 4月29日,加加林成为第一个飞入太空的人。随后不久,季托夫又乘坐“ 东方二号”飞船在太空中逗留了25个小时。人类终于毫无疑问地踏入了太空。 科罗廖夫的梦还在继续。向月球发射探测器,在月球软着陆,向其它行星发射探 测器都一一实现了,但他却没有能看到人类在月球上首次旅行。他于1966年1月去世。 他的骨灰盒被置入红场,他的住宅成为纪念馆。 美国人在这场太空竞赛中,一开始是失败者,其原因是多方面的。对于发射人造 卫星有两个方案,一个是先锋火箭设计,这个方案由于屡次的失败而最终遭废弃。但 也由于优先发展了这个计划,结果“先锋号”卫星发射失败更加造成了苏联在空间科 技上优于美国的感觉。另一个是由布劳恩领导设计的“红石”中程导弹方案,这是在 A-4 基础上稍作改进而产生的。布劳恩很早就指出,利用改进了的“红石”导弹将有 可能将卫星送入地球轨道。1957年 5月31日“宇宙神-C”试验成功,这时已具备了发 射人造卫星的可能,但由于其它原因被搁置了。只是在先锋计划失败后,迫于公众的 强大压力,国防部命令布劳恩小组必须在1958年 5月前准备好发射。但布劳恩他们认 为并不需要这么多时间。结果在1958年1月31日,“探索者1号”顺利升空。发射所用 的火箭是“朱诺-1号”,它是在原有的“宇宙神-C”火箭上再加一级,即第四级固体 火箭推动器。发射的时候,布劳恩并不在现场,他只能在五角大楼里焦急地等待。因 为一旦发射成功,布劳恩就要对公众发表讲演。只是当收到从卫星上传来的无线电讯 号时,所有的人才都松了一口气。 布劳恩也是一个对太空怀有特殊感情的人,他于1912年 3月23日生于德国的一个 上层家庭。早年就表露出在科学和音乐上的才能。他得到了母亲的文化熏陶,而不是 他父亲的商业、财政和政治上的爱好和才能。早在18岁时,他就加入了宇航协会从事 火箭研究,而终生再没有放弃过。在人造地球卫星发射成功后,他着手设计推力更大 的火箭,以便能将人送往宇宙空间,但他的方案并没有受到应有的重视。只是到了肯 尼迪时期,情况才根本改变。此时的航天事业以登月为核心,而建造能把庞大的阿波 罗飞船送往月球的大型火箭就是不可缺少的。“土星-5”应时而生。“土星-5”的研 制是非常困难的,以至于布劳恩在1967年11月 9日火箭试验成功后说:“我从没有相 信过它能实现。”但事实证明“土星-5”是完美的设计,极好地完成了阿波罗计划。 关于月球之旅,一开始有两种观点。一种是采用月球轨道分离方式,另一种是采 用地球轨道分离方式。前者是由奥伯特提出的,也是后来实际采用的。后者是布劳恩 一开始坚持的。他设想用一枚“土星-5”将飞船送往地球轨道,然后再用另一枚火箭 以供给飞船充分的能源来进行月球旅行。但当仔细分析表明了前一方案的优越性后, 布劳恩愉快地放弃了自己的想法并专心于火箭研制。布劳恩是个心胸开阔的人,这也 是伟大的科学家应当具备的品格。 在1972年12月阿波罗17号结束飞行后,阿波罗计划就宣告结束了。布劳恩转到空 间站的研究上去。布劳恩也试图在其它方面有所突破,但他的健康情况却逐渐恶化, 导致他于1976年12月退休,于1977年1月16日死于弗吉尼亚。

火箭起源于中国,是我国古代的重大发明之一,早在宋代就发明了火箭,在十三世纪以前,中国的火箭技术在世界上遥遥领先,火箭是热机的一种,工作时燃料的化学能最终转化成火箭机械能.现代火箭用来发射探测仪器,以及人造卫星、宇宙飞船、航天飞机等空间的飞行器.目前各种型号的中国火箭有: 1、长征一号是我国第一枚三级运载火箭.它以两级液体火箭为基础,加固体第三级.固体发动机由固体发动机研究院研制.全箭由中国运载火箭技术研究院技术抓总.箭长29.46m,最大直径2.25m,起飞质量81.5t,起动推力达106 N.二、三级有转接锥壳相连.第三级与第二级完全分离后,起旋火箭点火,使第三级在空中自由起旋.整流罩用水平抛脱.长征一号火箭具有将300 kg的卫星射入倾角为70°、高为440km的圆轨道的运载能力. 1970年4月24日,“长征一号”运载火箭在酒泉发射中心首次发射我国第一颗人造地球卫星“东方红一号”,再次发射把实践一号科学实验卫星送入轨道. “长征一号”的改型,“长征一号丁”,在原一二级基础上,更换三级固体发动机,将使其近地轨道的运载能力达到700kg~750kg. 2、长征二号两级液体运载火箭,全箭长约32m,最大直径3.35m,起飞质量190 t,一级装有4台发动机,地面推力为2.8×106 N,二级主发动机真空推力7.3×105 N,还有4个可以遥控的游动发动机(总推力4.7×104N),能将1.8 t的有效载荷送入近地轨道,1974年11月首次发射,由于一根导线有暗伤,导致飞行试验失败.1975年11月发射返回式遥感卫星准确入轨.接着,又发射两次,均获成功. 随着卫星对火箭运载能力要求的提高,“长征二号”火箭也作了相应的技术状态的修改,使技术性能和运载能力均有所改进和提高.近地轨道运载能力达到2.5 t左右,命名为“长征二号丙”,多次发射均获得成功.发射表明:“长征二号丙”设计方案正确,性能稳定,质量可靠,获得国内外同行的好评. 3、长征二号E即长征二号捆绑火箭,中国运载火箭技术研究院研制的第一枚推力捆绑式(也叫集束式)运载火箭,它是以经过改进的“长征二号丙”火箭作芯级(一级加长4.6 m,二级加长5.2 m)第一级箭体上并联4个长15.3 m,直径2.25 m的液体助推火箭.上面级和卫星都装在直径4.2 m,高10.5 m的整流罩内,全箭长49.7 m,芯级直径3.35 m,芯级一级发动机4机关联,加上4枚助推火箭,总推力为6×106N,可把8.8 t有效载荷送入200 km的圆轨道,1988年底获准研制,只用了18个月的时间,实现了预定目标.1990年7月16日首次发射,一举成功,把一颗巴基斯坦的科学试验卫星和一模拟有效载荷准确送入轨道.用如此短的周期,研制成功一个新型大推力运载火箭,这在我国是史无前例的,在世界航天史上也属罕见,它为我国发展载人航天技术和满足国际卫星发射服务市场的需要奠定了基础.1992年为澳大利亚发射两颗美制第二代通信卫星. 这种火箭,如配以中国的固体推进剂的上面级可将3 t的有效载荷送入同步转移轨道;如配以液氢液氧推进剂上面级,构成“长征二号E/HO”,其同步轨移轨道的运载能力将达到4.8t. 4、长征三号是以“长征二号丙”为原型加氢氧第三级组成的三级运载火箭.由中国运载火箭技术研究院负责总设计和研制第三级,第一、第二级由上海航天局承制,全箭总长44.56 m,起飞质量202 t,起飞推力2.8×106 N,第三级氢氧发动机在高空失重条件下二次启动.其同步转移轨道推力为1.4×年1月29日首次发射,由于第三级发动机二次启动不正常,卫星进入近地轨道运行.经过70个昼夜的奋斗,4月8日再发射,获得圆满成功. 1990年4月7日,“长征三号”为香港卫星通信有限公司成功地发射了亚洲一号通信卫星,标志着中国的长征系列运载火箭开始步入国际卫星发射服务市场. 5、“长征三号甲”“长征三号甲”是为发射新一代通信广播卫星而研制的新型运载火箭.它在“长征二号”运载火箭的基础上,采用了多项先进技术,同步转移运载能力由原来的1.4 t提高到2.5 t,它是一种大型三级液体火箭,全长52.5 m,直径和整流罩均超过长征三号,起飞质量241 t,起飞推力3×106 N,火箭质量近40 t,自1986年2月开始研制,重大技术有30多项,其中火箭的三级推力氢氧发动机,冷氦加温增压系统,动调陀螺四轴平台,低温氢气能源双向摇摆伺服机构等4项技术已属世界一流.我国航天科技工作者倾注8年心血研制的这种运载火箭,至今发射3次,均获成功,巍巍长箭涉三关,在我国航天史上写下一页新的篇章. 首试锋芒送双星.1994年2月8日北京时间下午4时34分,最新研制的“长征三号甲”运载火箭在西昌卫星发射中心点火起飞,将一颗“实践4号”空间探测卫星和一颗模拟卫星送上太空. 前功尽弃经磨难.第二枚“长征三号甲”运载火箭于1994年11月30日凌晨1时2分在西昌卫星中心发射成功,火箭点火升空后,经过24分钟飞行,把我国新一代通信卫星“东方红3号”送入近地点20.58 km,远地点36 220 km的地球同步转移轨道,卫星完成第三次变轨,进入巡航姿态.经过三次变轨后,卫星已在准同步轨道上运行.由于星上姿态控制推力器燃料泄漏,未达到进入同步轨道的目的.1997年5月12日,“长征三号甲”运载火箭第三次发射,成功地将“东方红3号”通信广播卫星送入预定轨道. 6、长征三号乙我国自行研制、目前运载能力最大的新型捆绑式运载火箭“长征三号乙”于1997年8月20日凌晨从西昌卫星发射中心成功地将菲律宾卫星送入轨道,这表明长征系列运载火箭具备了能把5 000 kg有效载荷送入高轨道的能力.这是长征火箭第46次成功发射,也是中国长城工业总公司第12次执行商业发射服务合同. “长征三号乙”火箭全长54838 m,起飞质量426t,可将5000 kg的有效载荷送入倾角为28.5°的地球同步转移轨道,它充分继承了长征系列的芯级除贮箱加长,结构加强及整流罩加大以外,与长征三号甲火箭相同,也具有在真空条件下二次启动能力的氢氧发动机技术和同轴挠性平台等技术.火箭一级周围捆绑的4个助推器,与长二捆火箭完全相同.由于捆绑了助推器,其控制和遥测系统在长三甲的基础上作了相应的修改,是中国长征系列火箭中高轨道运载能力最大的火箭. 马部海卫星是美国劳拉空间系统公司在fs1300平台的基础上设计的三轴稳定地球同步通信卫星,它共有30个C波段转发器和24个KU波段转发器,能向菲律宾、中国和东南亚地区提供语言、图像和数据传输等通信服务.马部海卫星是亚洲地区功率最大的通信卫星,其最大分离质量约3770kg,在轨道寿命超过12年.它将定点在东经144暗某嗟郎峡 .1997年10月17日凌晨3点13分,长征三号乙运载火箭在西昌卫星发射中心又一次发射升空,将亚太二号R通信卫星成功送入预定轨道,远地点47 922 km近地点201 km,倾角24.4º,卫星质量3 700 kg,此次发射是长征系列运载火箭是48次发射. 7、风暴一号是两级运载火箭.由上海航天局研制,火箭长32.6 m,直径3.35 m,起飞推力2.8×106 N,起飞质量191 t,推进剂为四氧化二氮和偏二甲肼.一级发动机由四台可切向摇摆的游动发动机组成,二级发动机由一台主发动机和四台可切向摇摆的游动发动机组成.制导系统采用平台一计算机全惯性系统,姿态控制采用有源网络校正装置,贮箱采用主强度铝合金材料,采用自然增压方案.“风暴一号”可把1 500 kg的有效载荷送入近地轨道. 为了提高运载能力,采用了大幅度减轻结构重量,降低发动机混合比偏差,一级采用耗尽关机.二级主发动开机后采用游动发动机小推力飞行入轨等措施.为了提高轨道精度,采用了速度导引有机结合的制导方法,为了用一枚火箭发射三颗卫星,攻克了结构动力学和多星分离运动学的技术关键. 1975年以来,“风暴一号”先后发射了六颗卫星.它们是三颗科学技术实验卫星和1981年9月20日用一枚“风暴一号”运载火箭成功发射的三颗卫星. 8、长征四号是一种多用途三级常温推进剂运载火箭,具有性能优良,结构可靠,成本低廉,发射场通用,使用方便等特点,由上海航天局研制. “长征四号”采用四氧化二氮和偏二甲肼推进剂,全长41.9 m,改进的一、二级直径为3.35 m,新研制的三级直径为2.9 m,火箭起飞质量249 t,起飞推力3×106N.“长征四号”在总体上进行了优化设计,加长一级推进剂贮箱4 m,加大一级发动机推力2×105N,三级采用两台5×104N推力的发动机,减轻结构设计质量约300 kg,使火箭的运载能力大幅度提高,该火箭运送地球同步转移轨道卫星的运载能力为1 250 kg,运送900 km高度的太阳同步轨道卫星的运载能力为1 650 kg.“长征四号”在国内大型运载火箭上首次应用了数字式姿态控制系统.三子级全程氮气压力值增压输送系统,三子级双向摇摆发动机.无水肼表面张力定箱,三级单层高强度铝薄壁共贮箱等多项先进技术. 1988年9月7日和1990年9月3日,“长征四号”运载火箭两次发射太阳同步轨道“风云一号”气象卫星均获圆满成功.“长征四号”具有两种不同直径的卫星整流罩,可适应不同质量和尺寸的有效载荷,也可一箭多星发射,这为承担多种卫星的发射业务,特别是为发射同步轨道和极地轨道卫星创造了有利的条件. 附: 主要数据 长/m 芯级最大直径/m 起飞推力/N 运载能力/t 轨道/km 长征一号 29.46 2.25 1.04×106 0.3 400 长征二号 32 3.35 2.8×106 1.8 近地 长征二E 49.7 3.35 6×106 8.8 200 长征三号 44.56 3.35 2.8×106 1.4 同步轨道 长三甲 52.5 3.35 3×106 2.5 同步轨道 长三乙 54.848 3.35 5.0 同步轨道 风暴一号 32.6 3.35 2.8×106 4.8 200 长征四号 41.9 3.35 3×106 1.25 同步轨道

火箭推进剂的化学研究论文

看到这样的问题不知是气愤还是悲哀,现在的学生都怎么啦?任务式学习,就是我们给你写好还让你拿全班第一又能说明你什么?说明你很会上网?很会抄袭?年轻的一代是父母的希望,是社会的希望,是国家的希望.父母一片心血,老师的辛勤灌溉,国家的致力培养,就出来这样的‘人才’?真乃家之不幸,国之不幸啊~~~~

1857年9月17日,齐奥尔科夫斯基出生于俄国梁赞州的伊热夫斯基村。父亲是护林员,母亲出身工匠之家,家境贫寒,儿时过着艰辛的生活。更不幸的是,齐奥尔科夫斯基10岁时患上严重的猩红热病,双耳失聪,尚未读完小学就不得不辍学在家。在父母的辅导下,他靠顽强的毅力自学了小学和初中课程,并养成了勤于思考的习惯。14岁时,他从物理书中获得知识,尝试着做风箱扇风推动的车模型,做纸袋充氢气飞行,绘制想像中的飞行器草图。

1873年,16岁的齐奥尔科夫斯基怀着强烈的渴望,只身到莫斯科开始3年的求学生涯。由于耳聋无法进入学校读书,只能每天到图书馆自学。他不论寒暑,早出晚归,整天泡在图书馆刻苦攻读,靠父亲寄钱维持起码的生活,3年竟学完了大学理科的课程。在求学期间,他对星际航行产生了浓厚兴趣,自己动手制造金属飞行器,开始研究有关火箭飞行的问题。他后来回忆说:“我很少系统地学习过,只读过使我产生兴趣的和自认为重要的一些书。可以说,我一面学习,一面创造,尽管也经常耽误学习和创造失败。我也很难准确回忆起我是怎样开始计算有关火箭的问题。对我来说,第一颗太空飞行思想的种子是由著名的儒勒.凡尔纳的幻想小说播下的,它使我在头脑里形成了确定的方向,我开始把它作为一种严肃的活动。”

1879年,齐奥尔科夫斯基以优异成绩通过考试,取得中学教师的资格。他一边在波罗沃斯克中学教数学和物理,一边独立研究星际航行问题。他对宇航的研究倾注了全部热情,把课余时间都投在了没有引力的世界,甚至到了痴迷的程度。在他这一时期的笔记本里,画有太阳系的天文图,描绘了能悬挂在太空的“纺锤形塔”和“人造圈”,这可能就是他关于人造卫星和空间站的最早构想。1883年,他写出了《自由空间》论文手稿,指出利用反作用装置作为太空旅行工具的动力的可能性,在地球之外人类受到失重的考验,火箭能在太空中飞行,还绘出了一幅征服太空的火箭发动机原理图。1887年,他应邀去莫斯科作了关于金属飞行器的学术讲演,他的研究成果引起一些科学家的关注。1891年,他从理论上研究了星际航行问题,进一步明确指出只有火箭才能达到这一目的。

这时发生了两件令齐奥尔科夫斯基十分痛心的事情:一件是邻居的草屋失火,将齐奥尔科夫斯基家的图书、工具、模型和手稿焚毁,多年的心血付之东流;另一件是他的才华和正直受到嫉妒,未能再去莫斯科工作,给他的研究工作造成很大困难。1892年,他愤然离开波罗沃斯克城,举家迁居卡卢加小镇。在那里他仍然是一边在中学教物理,一边潜心于他的研究实验工作。1893年,他发表了科幻小说《在月球上》,两年后又出版了《关于地球和天空的幻想及万有引力效应》一书,提出了发射人造地球卫星的设想。他不仅利用学校破旧的物理实验室做小蒸汽机喷气实验;而且还在自家的房顶上用废弃的铁筒制成一个“风洞”,用这种简陋的送风机来测定空气的阻力,获得有关火箭和航天原理的数据,为他创立航天理论打下了基础。

功夫不负有心人。齐奥尔科夫斯基的研究,几乎涉及到实现太空飞行从火箭燃料选择到人如何克服失重影响的各种课题,在理论研究上取得了突破性的进展。1898年,他完成了《利用喷气装置研究宇宙空间)的经典论文。这篇论文凝结了他多年的研究成果。但几经周折,这一划时代著作5年后才在莫斯科的《科学评论》杂志上发表。随后,他又在《航空报告》杂志上陆续发表了几篇关于火箭和太空飞行的论文,奠定了航天学的理论基础。这些确立了齐奥尔科夫斯基作为航天理论奠基者的地位。

齐奥尔科夫斯基发表的《利用喷气装置研究宇宙空间》,为人类飞向太空开辟了道路。在这本科学著作中,他论证了火箭作为星际航行工具的可能性,推导出了火箭运动的基本方程。这个方程后来被命名为齐奥尔科夫斯基公式。它引出了火箭质量比,即火箭起飞前的质量与火箭所携带燃料耗尽后的质量之比的概念,还首次提出了火箭推进剂比冲的概念。质量比越大,比冲越高,火箭性能就越好。因此,火箭质量比和推进剂比冲对于利用火箭实现太空飞行具有重要意义。同时,他还推算出火箭要克服地球引力所需的最小速度,即第一宇宙速度,首次明确提出液体火箭是实现星际航行的理想工具。这标志着火箭飞行理论的真正开端,是航天发展史上的一个里程碑。

经过长达7年的艰苦努力,1911年,齐奥尔科夫斯基又完成了《火箭与太空探索》的研究论著,更加丰富了他的航天理论。在此书以连载形式发表的前言中,他写道:“开始必须有理想、幻想甚至神话,接着便进行科学计算。这样,最后就可以实现自己的理想,有关宇宙航行的著作便属于创造性阶段。”确实如此,齐奥尔科夫斯基进一步描绘了宇宙飞船发射和飞行,超重对航天员的影响,人在太空中的失重效应,登天观看地球的迷人景象等。所有这些都建立在严格的科学计算基础上,充分展示出了他的创造才能,揭示了利用火箭探索太空的基本原理。

在齐奥尔科夫斯基担任中学教员的十分艰难的日子里,他大约写了130篇论文,但只自费发表了近50篇,还不被人们所理解。俄国十月革命后,齐奥尔科夫斯基的研究工作受到信任和重视,而且逐步有了较好的生活和工作条件,他的关于征服宇宙空间的思想也迅速传播开来。他在印岁以后的18年时间里,写了《飞往宇宙空间的火箭》、《宇宙飞船》等450篇手稿,继续阐述他关于星际航行的认识和思想。特别是1929年完成的《宇宙火箭列车》,对多级火箭作了详细的理论论证,证明了化学推进剂的火箭发动机能够达到宇宙速度。1930年发表的《致航天学家》和1932年发表的《达到同温层》著作,则进一步论证了火箭推进剂的性能和对火箭的各种设计要求。他晚年写成的《宇宙火箭工作》一文,则系统地总结了他在火箭和航天学领域的工作和成绩,论及了火箭、人造卫星、载人飞船、太空基地、星际航行的几乎所有问题,为航天学的创立作出了巨大贡献。他在这篇自述的文章中说:“在我工作和研究过程中,我发表了利用类似于火箭的反作用装置实现太空飞行的理论。基于已被检验的数据推导表明,人类进入太空甚至在地球大气层之外移民都是可能的。也许当我的思想获得应用,人类不仅在地球表面上活动,而且飞到宇宙空间时,上百年已经过去了。”这一预言不是已经并正在变成现实吗!

从20世纪30年代起,齐奥尔科夫斯基已不再是个人摸索和孤军奋战,而是在他的指导和影响下莫斯科和列宁格勒(圣彼得堡)成立了专门机构,培养出了一批火箭专家,专门研究他所开创的火箭和太空飞行问题。1932年,苏联政府为表彰齐奥尔科夫斯基为促进航天科学发展作出的杰出贡献,授予他劳动红旗勋章。1934年还选他为喷气研究所学术委员会名誉委员,把火箭推进剂质量与无推进剂时的火箭质量之比值命名为齐奥尔科夫斯基数值。1935年9月19日,齐奥尔科夫斯基在卡卢加逝世,享年78岁。

现在,一个世纪过去了。人们看到航天已经不再是神秘而被嘲讽为“怪人”的幻想,人类不仅频繁地到太空活动甚至登临月球漫步,而且正在向着一个更远的目标进军。这就是齐奥尔科夫斯基在1933年“五一”劳动节向公众发表的广播讲演中所期望的未来:“40年来,我一直从事有关火箭原理的研究。我始终都坚定地认为,在可预见的将来,人类将可能飞向火星。尽管时代在变,但星际航行的理想总要继续下去。今天我确信,你们之中将有人到星际中航行。”

本文由北京宇航系统工程研究所的李平岐 陈海鹏 洪刚 朱永泉 王建明等共同编撰,发表于《国际太空2017年09期》,以下为文章内容:

对于载人登火任务,若采用常规的化学推进技术,地球出发规模达到1400t,而采用核热推进技术后,地球出发规模可降低至800t。核热推进技术以其高比冲、大推力的独特性能,具有化学推进火箭无法比拟的深空探测优势。

前期火星探测任务表明,火星上具备生命存在的某些必备条件,尤其是水的发现,极大地激发了人类在火星上寻找生命的热情,成为近年来国际深空探测的热点。核热推进技术以其高比冲、大推力的独特性能,具有化学推进技术无法比拟的深空探测优势。而且随着核动力技术的逐步发展,核能源安全问题可以得到可靠解决。为了确保我国在未来深空探测领域能够发挥更大作用,发展核热推进技术具有重大意义。

本文以载人登火任务为背景,对核热推进运载器的总体方案进行了初步研究,对核热推进运载器的总体性能、设计特点以及关键技术进行了初步分析和梳理。

随着人类对火星的了解越来越多,美国国家航空航天局、俄罗斯联邦航天局、欧洲航天局都已开始进行移民火星的科学研究,有望在21世纪30年代中期实现人类登陆火星的梦想。其中,美国国家航空航天局早在1988年就已经开始了载人火星探测的方案研究,并形成了载人登陆火星的“火星参考任务”(DRM)系列方案。

美国《载人火星 探索 设计参考体系》(Mars ),基本确立了“重型运载火箭+核动力末级”的总体方案,其基本方案为采用7发重型火箭将核热推进级、载人/货运有效载荷送至近地轨道,之后在近地轨道分别对接成2发货运火箭和1发载人火箭,由核热推进运送至火星并返回地球。早期,美国载人火星探测方案曾提到过利用传统化学推进系统进行载人登火,地球出发规模高达1400t。核热推进系统的结构与化学火箭发动机类似,推力也大致相当,但比冲提高到900 950s左右,地球出发规模得以降低到800t。Mars 方案总体上采取“人货分运、物先人后”的原则。

美国Mars 载人登火方案

参考美国Mars 方案,我国也开展了初步的载人登火任务规划,按照地球出发规模700 800t考虑,共进行7 8次发射,在近地轨道进行5次对接。

1)由重型运载火箭1将核热推进奔火变轨级1送入近地轨道;

2)由重型运载火箭2将核热推进奔火变轨级2送入近地轨道;

3)由重型运载火箭3将轨道舱1(火星着陆下降器和上升器)送入近地轨道;

4)由重型运载火箭4将轨道舱2(火星表面生活舱和火星车)送入近地轨道;

5)由重型运载火箭5将核热推进奔火变轨级3送入近地轨道;

6)由重型运载火箭6将液氢贮箱送入近地轨道;

7)由重型运载火箭7将载人摆渡航天器(含飞船2)送入近地轨道;

8)由载人火箭将载人飞船1送入近地轨道。

将核热推进奔火变轨级1和轨道舱1在近地轨道对接,由核热推进奔火变轨级1将轨道舱1送入奔火轨道,轨道舱1与奔火变轨级1分离,之后由轨道舱1制动、气动减速将下降器和上升器送入环火轨道,下降器和上升器着陆火星表面;将核热推进奔火变轨级2和轨道舱2在近地轨道对接,由核热推进奔火变轨级2将轨道舱2送入奔火轨道,轨道舱2与奔火变轨级2分离,之后由轨道舱2制动、气动减速将火星表面生活舱和火星车送入环火轨道,等待后续入轨的载人飞船;将热推进奔火变轨级3、液氢贮箱、载人摆渡航天器和载人飞船1依次在近地轨道对接,航天员由载人飞船进入摆渡飞行器,由核热奔火变轨级3(和液氢贮箱)将载人摆渡航天器和载人飞船送入奔火轨道、环火轨道。载人摆渡飞行器和先入轨的火星表面生活舱在环火轨道对接,生活舱与摆渡飞行器其他部分分离,之后生活舱和飞船2降落在火星表面。

完成使命后,航天员通过火星上升级和飞船2进入火星轨道,并与载人摆渡航天器其他部分和载人飞船1进行交会对接。返回地球之前,航天员进入载人飞船1,与摆渡航天器分离,直接再入地球。

核热推进动力系统主要包括核热发动机和增压输送系统两部分组成。目前,国内核热发动机还处于概念设计阶段,核热发动机在原理上与以液氢为工质的膨胀循环发动机类似,不同的是将氢氧燃烧室替换成核反应堆。液氢推进剂从贮箱出来经泵增压后首先进入发动机冷却夹套冷却推力室后气化,之后分为两路:一路直接进入推力室,另一路吹动涡轮后进入推力室。进入推力室的氢气经核反应堆加热之后,变成高温高压气体经喷管高速喷出,形成推力。

核热发动机概念原理图

(1)核热发动机比冲

发动机比冲正比于推进介质温度的开方,反比于分子量的开方。由于材料及传热的限制,燃烧室温度一般不会超过3000 4000K,因此降低分子量是提高比冲的有效途径。

化学燃烧产物的分子量一般都超过10,而核热发动机可以直接将低分子量介质加热至高温,从而产生高比冲。目前而言,核热发动机最好的工作介质是液氢,既有良好的冷却和膨胀做功能力,又是分子量最小的单质。为最大化提高介质温度,核燃料棒技术水平对比冲性能起着决定性作用,是核热发动机最为核心的关键技术,也是我国在核热发动机领域与国外差距较大的技术。

目前,俄罗斯在该领域处于最高水平,其三元碳化物技术可将氢加热到2800K以上,从而实现发动机比冲超过900s。在发动机面积比为300和喷管效率为的情况下,随着氢加热温度的提高,比冲相应发生变化。

(2)核热发动机推质比

核热发动机由于有核反应堆及相关屏蔽层的存在,推质比低于常规的液体火箭发动机,但远大于电推进发动机,美国核热发动机推质比设计值最高达到,一般取在3 4之间。核热发动机推质比取决于与核相关的组件,如反应堆、反射层、屏蔽层、控制机构等,与常规低温发动机相关组件,如推力室、喷管、涡轮泵等质量仅占10%左右。

对于核热发动机的反应堆,构成部分主要由堆芯(含燃料和慢化剂等)、反射层、反应性控制系统、屏蔽以及其他堆内构件组成。

以美国载人登陆火星用的核热发动机反应堆为例,经估算,核反应堆的总质量约3422kg,而发动机推力约,推质比为。再综合考虑发动机喷管、涡轮泵以及推进剂输送管等,实际工程应用中核热发动机推质比在3左右。

(3)核热发动机起动、关机性能

常规火箭发动机的能量来源于推进剂的化学反应,其加速累积和减速释放的过程与推进剂的供应量直接关联,因此可以实现比较快速的起动和关机。

而核热发动机采用核反应堆作为能量来源,其起动关机过程很大程度上取决于反应堆的工作需求和特性,特别是核反应堆在停堆过程中,部分产物的辐射效应还会持续较长时间,需要持续予以冷却。

通过分析美国的核热发动机研制经验,核热火箭发动机的起动关机过程与常规火箭发动机有一定的差异,尤其是在发动机关机后还要维持一个较长时间的冷停堆过程。

对34吨级月球摆渡用核热发动机的起动和关机特性进行了初步分析,该发动机以美国“运载火箭用核发动机”(NERVA)计划研制发展的NRX系列发动机为原型,设计总温2361K,设计室压,真空比冲822s,设计推力下流量为。

1)起动过程。核热火箭发动机的起动过程与常规低温火箭发动机有点类似,但时间要长得多。

起动第一阶段,液氢在贮箱压力作用下流经涡轮泵、推力室、反应堆等,反应堆处于较低功率,该过程大约需要25s,主要作用是将发动机充分预冷,并将反应堆预热。

第二阶段发动机开始加速起动,温度达到额定工况,推力达到额定推力的60%,历时约;

第三阶段是在总温保持不变的情况下,室压增大至额定工况,推力达到100%,历时约。总体来看,核热发动机起动过程历时约52s,扣除发动机预冷时间,也需要约27s,起动过程的平均比冲大约只有600s。

2)关机过程。核热发动机的关机过程基本是起动过程的逆过程,但耗时要更长一些。首先,发动机要先降功率至60%工况。这一过程发动机总温保持不变,室压降低,历时约,此过程发动机比冲不变;而后,发动机在这一状态维持1 3min,主要目的是降低后续冷停堆过程中废热的产生量,以节省推进剂消耗;然后,发动机总温、推力再继续下降到发动机关机,还需要维持一个长时间小流量冷却的废热排放阶段。该34吨级核热发动机的整个关机过程历时约350s。整个关机过程中,发动机平均比冲约为600s。

核热发动机与常规发动机最大的不同就在于发动机关机后还存在一个废热排放的阶段,这主要是由于反应堆停堆后,一些反应产物仍然具有很强的放射性,会释放出废热。以34吨级月球摆渡用核热发动机为例,该过程持续约64h,推力约为134N,比冲约400s,由于持续时间较长,这一过程中液氢消耗需要考虑,同时,这一过程的冷却氢可设计用于发电,为整个飞行器提供一定的电力来源。

核反应堆在运行时将放出γ射线和大量的中子,这些射线和中子将对航天器上的电子元器件和航天员产生危害,因此需要加以屏蔽,将其辐射水平降到许可值以下。对于空间应用的反应堆,由于体积质量的限制较严格,其电子元器件和航天员处于相对集中的位置,可采用阴影屏蔽的方式,将辐射水平保持在较低水平。

对于使用核动力的航天器,一般设计成细长形结构,即仪表舱、人员舱位于一端,核反应堆位于另一端,两端之间为液氢贮箱。

由于中子及γ射线的直线运动特定,且需屏蔽的位置相对集中,需要将屏蔽的区域放在屏蔽块的阴影区。

辐射屏蔽布置示意图

参考大亚湾和秦山核电站大修制定的防护指标,集体剂量不超过600(人·mSv),个人最大剂量不超过15mSv,考虑到核热推进末级受体积质量的限制,其辐射水平可能会略高,假设核热推进系统辐射安全区的允许泄露值小于每天20mSv,此数值已大大超出大亚湾和秦山核电站大修时制订的辐射防护指标要求。

按照火星探测任务周期为3年考虑,并假设上述辐射被火箭电气产品全部吸收,则整个任务周期累计吸收剂量为,在目前的产品水平下,非抗辐射半导体元器件可以承受不小于100J/kg的电离辐射剂量。

可见,火箭电气产品受到的辐射剂量要小于元器件的承受能力,核热推进对电气系统方案并不产生本质影响,但是核热发动机必须具备基本的辐射屏蔽能力,将对外辐射控制到一个可接受的范围内。

对于深空探测任务,复杂的深空辐射环境是航天器面临的主要环境,暴露在地磁层之外的深空环境中充满了高能量的混合空间辐射。

采用核热推进的航天器布置图

根据航天器在深空的飞行阶段可将深空环境分为三部分:

一是从地球飞往其他星球旅途中的空间辐射环境,其主要辐射源是太阳粒子事件和银河宇宙射线;

二是航天器降落星体过程中的空间辐射环境,其主要辐射源为星体磁场俘获的太阳宇宙射线和银河宇宙射线粒子;

三是航天器所降落的星体表面的辐射环境,主要是星体吸收宇宙辐射后所发生的二次辐射。

深空辐射环境引起的危害主要是辐射损伤和单粒子事件,深空辐射环境中充满的高能电子、质子和少量的重离子与航天器材料作用,将引起航天器材料的性能损伤与破坏,其中高能电子对航天器材料产生电离作用、高能质子和重离子对航天器材料产生电离作用和位移作用。

在进行深空探测航天器电气系统设计时,要考虑光热辐射引起的单粒子事件造成计算错误,或改变存储器中的数值等风险,软件设计时需考虑这种情况,采用计算冗余、错误校验等方法进行检测判别,确保箭机计算的正确性。

核热推进上面级的工作环境在大气层以外,不会受到气动载荷的作用,因此其结构方案设计可以不受气动外形限制。以俄罗斯发布的核热动力运载器的概念图为例,运载器的主体承载结构以杆系为主,以此来提高运载器结构效率。而且由于没有整流罩空间的限制,有效载荷结构形式的灵活性更大、空间分布方案更多。

核热推进系统只需要液氢一种工质,因此只需要液氢一种贮箱,不需要另外设置氧化剂贮箱,在结构设计上的约束更少,可以更好地进行结构方案的优化。

但是采用核热发动机后,相比常规发动机将承受更恶劣的高温环境条件,这就需要在结构设计过程中全面考虑发动机附近结构、仪器和电缆等的热防护需求,保证各系统、单机的正常工作。

而且与常规发动机相比,核热发动机结构更加笨重,这就需要增大发动机部分,尤其是反应堆周围的结构强度,同时保证发动机各部件的密封性。

俄罗斯核热动力运载器概念图

参考美国Mars 方案,提出了与美国类似的载人登火初步方案,地球总出发规模约700 ~ 800t,分三次完成地火转移,单次地球出发规模约300吨级。通过分析从停泊轨道分别加速至地球出发能量C3e为8或20km2/s'时的发射效率、工作时间、引力损失以及入轨质量,给出核热推进末级的推力规模以及核热发动机的总体参数建议。

假设停泊轨道为高度200km的近地圆轨道,核.热发动机推质比取3、比冲取905s,考虑引力损失影响,不同推力规模情况下,对核热推进运载器的发射效率情况进行分析,其中,发射效率指扣除核热发动机干重的入轨质量(进入地火转移轨道)与停泊轨道出发质量的比。可以看出,当过载在之间时,其发射效率最高。

在发射效率已经考虑了不同过载的情况下,变轨时间不同带来引力损失影响,具体影响为过载越小,工作时间越长,引力损失越大,但发动机干重较小。按照单次地火转移的出发规模300t考虑,核热推进剂运载器的推力应该在45t左右最佳,结合美国、俄罗斯核热发动机研究情况,建议核热发动机推力按照15t考虑,核热推进运载器按照3机并联。

地球转移发射效率随过载变化情况

核热推进技术以其大推力、高比冲等特点在未来深空探测任务中具有无可比拟的优势,但也应看到,目前距离核热技术的工程应用还有很长的路要走,还需要攻克很多的技术难题。根据目前的基于核热推进的载人登火任务分析,核热推进运载器从地球出发到达火星需要约180天,在火星停留- -段时间后(一个星期至一年半时间不等),核热发动机再点火返回地球,因此推进剂长期贮存时间应至少为半年时间,这对现有液氢长期储存技术的挑战极大。

另外,核热发动机推力高温气氢比热(总温2500K时约为20000kJ/kg K)要远高于传统氢氧发动机的高温燃气比热( 燃气总温3400K,燃气比热3000kJ/kg K左右),导致壁面热流密度高于传统发动机,从而给冷却带来极大困难。

因此,要实现核热推进在载人登火任务中的应用,需重点解决核热反应堆小型化、核热发动机推力室冷却、推进剂长期贮存等重大技术难题。

关于火箭推进器的论文

火箭是以热气流高速向后喷出,利用产生的反作用力向前运动的喷气推进装置。它自身携带燃烧剂与氧化剂,不依赖空气中的氧助燃,既可在大气中,又可在外层空间飞行。1926年3月16日,美国火箭研制先驱者、科学家罗伯特·戈达德在美国成功发射了世界上第一枚液燃助推火箭。罗伯特·戈达德被公认为是现代火箭技术之父。

早在17世纪,牛顿就设想过物体如何绕地球做圆周运动:在高山上架设一尊威力无比的大炮,如果炮弹的速度足够快,它就不会落下来,而是围绕地球做圆周运动甚至可以飞出地球。牛顿还计算出来:大炮射出的炮弹要想不落地而围绕地球做圆周运动的话,速度必须达到千米/秒,这就是第一宇宙速度;而要飞出地球,就必须达到千米/秒,即第二宇宙速度。

在教学之余,齐奥尔科夫斯基醉心于各种科学研究和计算,特别是关于宇宙航行和火箭推动力的理论研究。1903年,他发表了《利用喷气工具研究宇宙空间》这本现代航天史上划时代的著作。书中提出了火箭飞行速度同火箭发动机喷气速度、火箭质量、燃料质量关系的公式——齐奥尔科夫斯基公式。从人类发射第一枚火箭到现在,世界各国每一枚火箭的设计制造都离不开这个公式的指导。

齐奥尔科夫斯基认为,要想克服地球引力进入环绕地球的轨道,需要使用液氢和液氧作为推进剂的多级火箭,才能达到必须具备的速度。火箭的推进剂经过燃烧室燃烧之后,产生高温高压气体,经过喷管加速喷出,产生反作用力推动火箭前进。这就像用水管喷水或枪炮射击时产生后坐力一样。齐奥尔科夫斯基不仅设计了火箭推进器、多级火箭方案,还提出了密封舱和空间站的设想,以及在太空生存必需的密封生态循环系统、为航天员提供氧气和食品等设想。

如果说齐奥尔科夫斯基解决了火箭的理论问题,戈达德和冯·布劳恩则解决了火箭的技术问题。

罗伯特·戈达德是美国最早的火箭科学家,1909年开始进行火箭动力学方面的理论研究。3年后,他点燃了一枚放在真空玻璃容器内的固体燃料火箭,证明火箭能在真空中工作。1919年,他发表的报告《到达极大高度的方法》阐述了火箭飞行的基本数学原理。1926年3月,戈达德成功发射了第一枚火箭:用汽油和液氧作为推进剂,长约米,发射质量为千克,飞行延续了约秒,最大高度为米,飞行距离为56米。这枚火箭证实了液体推进剂的可行性,从而使他成为现代火箭的鼻祖。到1945年去世之前,戈达德进行了34次火箭发射,但大多以失败告终,也没能获得官方资助。后来,为纪念这位火箭科学的先驱,美国国家航空航天局将位于美国东部马里兰州格林贝尔特的大型研究中心命名为“戈达德太空飞行中心”。

与戈达德比起来,冯·布劳恩要幸运得多。他1912年出生于德国,16岁时看到了德国航天先驱、火箭专家赫尔曼·奥伯特的著作《飞向星际空间的火箭》,从此迷上了星际旅行。1930年,布劳恩在柏林工业大学参加了奥伯特发起的德国空间旅行学会,协助奥伯特进行液体火箭测试。他的毕业论文详细论述了液体火箭发动机的理论和实验,被评为特优论文。第二次世界大战期间,他领导了德国V-2火箭的研制工作。V-2火箭以酒精和液氧为推进剂,全长14米,发射质量13吨,弹头1吨,飞行弹道最高为80~100千米。第二次世界大战后,冯·布劳恩到了美国,领导美国的航天事业。1946年,美国发射了一枚V-2火箭。这枚飞到80千米高空的火箭是用来进行太阳紫外线观测的,它开启了太空科学的新篇章。

齐奥尔科夫斯基在宇宙航行理论方面的建树是多方面的,当今宇宙航行的一些基本问题,他几乎都有涉猎。 1883年,齐奥尔科夫斯基在《外层空间》一书中首先从理论上证明,行星际空间为绝对真空状态,火箭可以在空间真空环境中工作,因为它自带氧化剂,燃料燃烧不需要外界供给氧。同时,它的反作用推进原理在真空中仍然有效。因此,火箭可以作为宇宙航行的动力。 1885年,他在一本科幻小说中提出发射人造地球卫星的设想。 1903年,齐奥尔科夫斯基发表《用火箭推进器探索宇宙》论文,文中提出火箭公式,从理论上证明:火箭的速度与火箭发动机的喷气速度成正比;火箭自身的结构质量越小,火箭所获得的速度越高。这个公式后来被称为齐奥尔科夫斯基公式,也被誉为宇宙航行第一公式,它为宇宙航行奠定了理论基础。齐奥尔科夫斯基还指出,液氢液氧是最理想的推进剂。在当时的工业技术水平上,他还指出,单级火箭达不到宇宙速度,必须用多级火箭接力的办法才能进入宇宙空间。 1911年和1912年,齐奥尔科夫斯基又提出有关载人宇宙飞行的一系列设想,例如,到其他星球上去必须经过真空区,载人宇宙飞船必须携带空气;飞船上必须有密封座舱;座舱中的空气必须不断净化,才能为乘客提供新鲜空气;飞船返回时利用地球大气刹车;建立轮胎形空间住宅,用自旋产生人造重力;用动物和植物组成生物循环链,建立密闭生态系统,为人提供食物和氧气。他还推导和论述了不同质量的物体在失重条件下的运动规律,研究了失重和超重对人体的影响。 1924年,他在《宇宙飞船》一文中具体地设想了一种纺锤形飞船,除动力装置和密闭生态系统外,还提出了现今太空机动器的设想。他设想乘员走出密封座舱后,可利用“宇宙枪”喷出气体的反作用力在太空真空中漫游。 齐奥尔科夫斯基还预言太阳的光能可以作为推动宇宙飞船的动力,因而提出太阳帆的设想。 齐奥尔科夫斯基一生写下了730多篇论著,70岁以后,他还写了《进入宇宙空间的火箭》、《宇宙火箭推进的列车》、《宇航员和火箭飞机加速升空》、《火箭燃烧》和《火箭的最大速度》等多部著作。 齐奥尔科夫斯基对宇宙航行理论的这些贡献是其意志和智慧的结晶。 齐奥尔科夫斯基1857年生于俄国梁赞一个贫寒的家庭。10岁那年一场严重的猩红热病,夺去了他两耳的听力,无法继续上学,只好由母亲指导他读书写字。但第二年母亲又去世了,他靠坚强的毅力自学了小学和中学的课程。16岁那年,他执意上大学,但没有一个学校肯收这个没有中学文凭的聋子。他只身来到遥远的莫斯科,寄住在一家好心的穷人家中,在图书馆中自学大学课程。父亲每月只能给他寄来十几个卢布。这点钱远不够伙食费,但他还要挤出钱来买书籍和实验用品,有时连续二三天不吃东西,常常饿得昏了过去。 父亲将他接回家后,他好不容易才被录用为中学数学教师。在业余时间里,他全力进行宇宙航行理论的研究和实验。然而,他常常不被人们所理解,认为他是一个“怪人”。他用科幻小说的形式宣传宇宙航行知识,被权贵们斥为“异端邪说”。一家杂志发表一幅漫画,讽刺他头顶地,脚朝天,腋下夹着大大小小的星球,挖苦他是“一个无名之辈,无聊文人”,斥责他“企图把青少年引向邪路”。但他顶着各种奚落和打击,毫不动摇地坚持自己的事业。 经过10多年的艰苦努力,他的研究成果才开始得到门捷列夫和斯托列托夫等著名学者的赏识。为了帮他在莫斯科找到一份工作,要他把自己的研究资料和实验模型寄去。但邻居的一场大火,使他的全部研究成果化为了灰烬。不过,他毫不灰心,重新积累资料,并写成论文。可是没有人肯为他出版。他想自己把论文印出来,又没有钱。 齐奥尔科夫斯基有着彻底研究问题的良好习惯,从不放过任何微小的细节。一次,他在物理学中学到,每一个作用力都会有一个大小相等、方向相反的反作用力存在。他在学习这一定律时,并不只是停留在定律本身,而是浮想联翩。他想到,地球绕着太阳转,地球运行的离心力与太阳对地球的引力大小相等、方向相反,所以地球始终在轨道上绕太阳运行。然后,他又进一步大胆设想,如果地球发生灾变,变成了碎片,碎片将会怎么样?经过思考,他认定地球碎片的引力中心仍然会继续保持在地球绕太阳运行的轨道上。这样,他就首先抓住了“引力中心不变定律”。这个定律与作用力和反作用力定律一样,是解决宇宙航行问题的一个基础理论问题。 另一次,他在看完一本叫做《作为星际航行工具的火箭原理》的小册子后,发现书中有许多概念是错误的,于是便对火箭原理进行系统研究,这就导致了著名的火箭公式的提出,为宇宙航行理论打下了一个坚实的基础。

康斯坦丁·爱德华多维奇·齐奥尔科夫斯基(俄语:Константин Эдуардович Циолковский、波兰语:Konstanty Ciołkowski,1857年9月17日-1935年9月19日)。

是俄罗斯和苏联的火箭专家和宇航先驱,他一生中大部分时间都是在他在莫斯科南部卡卢加郊外的木屋中度过的。

他出生于莫斯科南部的梁赞州一个中产阶级家庭,他的父亲是波兰人,母亲是俄罗斯人,由于他幼年得过猩红热,听力不好,所以不能升学,在家中学习直到16岁,他在自学期间,每天去莫斯科图书馆读书,后来参加中学教师资格的考试,人们对他的数学才能惊叹不已,他笑着说:“书籍是我的老师!”

后来他成为一位中学数学教员,直到1920年退休。齐奥尔科夫斯基研究了宇宙航行和火箭推动力的许多方面理论,所以被认为是人类宇宙航行之父。1895年,他访问巴黎,受到新建成的艾菲尔铁塔启发,他是第一位提出天梯理论的人。

他最著名的作品是1903年出版的《利用反作用力设施探索宇宙空间》,是第一部从理论上论证火箭作用的论文。齐奥尔科夫斯基计算了进入地球轨道的逃逸速度是8千米/秒,利用液氧和液氢做燃料的多级火箭可以达到这个速度。

齐奥尔科夫斯基一生出版了500多部关于宇宙航行的著作,包括一些科幻作品。他还设计了火箭控制方位的推进器,多级启动器,空间站和密封仓,以及提供氧气和食品的密封生态循环系统。但遗憾的是他的理论并没有能够在旧俄罗斯变为现实。他的著作影响到整个欧洲和美国的航天事业。

齐奥尔科夫斯基当时也研究过大气中的飞行器,他的计算曾经取得和莱特兄弟同样的结果,但他没有能作出实际样品来。

苏联火箭之父弗里德里希·灿德尔对齐奥尔科夫斯基的著作推崇倍致,1924年在苏联成立了第一个宇航学会,8月23日选举齐奥尔科夫斯基为军事航空学院的第一位教授。

苏联于1930年造出OR-1液体燃料推进的火箭,1933年造出OR-2型。1929年,齐奥尔科夫斯基在他的著作《宇宙航行》中提出多级火箭的设想。火箭推进计算的基本公式是以他名字命名的。

他还相信哲学家尼古拉·费奥多罗夫提出的向外星殖民的想法,认为这能使人类永久存在下去。现在在卡卢加有一个以他命名的宇航博物馆;月球上有一个以他命名的环形山,有一个小行星(第1590号)也是以他命名的。

主要成就

他撰写了超过400件作品,包括大约90篇关于太空旅行和相关科目的出版物。 他的作品涉及火箭的设计、转向推进器、多级增压器、空间站、用于将太空船引入空间真空的气闸,以及为空间殖民地提供食物和氧气的闭合循环生物系统。

1883年,齐奥尔科夫斯基在一篇名为《自由空间》的论文中,正式提出利用反作用装置作为太空旅行工具的推进动力,他对这种火箭动力的定性解释是:火箭运动的理论基础是牛顿第三定律和能量守衡定律。

这些思想在1893年发表的科幻小说《月球上》和1895年写的《地月现象和万有引力效应》中得到了进一步发展。

1896年,他开始从理论上研究星际航行的有关问题,进一步明确了只有火箭才能达到这个目的。1897年,他推导出著名的火箭运动方程式。

出版于1903年的齐奥尔科夫斯基的航天器设计的外观,是现代宇宙飞船设计的基础。 设计有一个船体,分为3个主要部分。飞行员和副驾驶在第一部分,第二部分和第三部分拥有燃料航天器所需的液氧和液氢。

在这些工作的基础上,齐奥尔科夫斯基于1898年完成了航天学经典性的研究论文《利用喷气工具研究宇宙空间》,接着,他又于1910年、1911年、1912年和1914年在《科学报告》上发表了多篇关于火箭理论和太空飞行的论文。这些出色的著作系统地建立起了航天学的理论基础。

相关百科

热门百科

首页
发表服务