二年级数学教学论文:激发学生课堂学习兴趣进入21世纪以来,我国基础教育课程改革与更新正在轰轰烈烈地展开。新课标的推出,要求我们更新观念,与改革同步。如何组织教学,怎样做才能体现“学生是数学学习的主人”,我们的角色转变为“数学学习的组织者,引导者与合作者”,怎样通过数学教学培养学生的创新意识和实践能力,成为这个学期研究的重要课题。二年级第一学期数学,在整个小学阶段占一定的重要位置。本学期数学教学的指导思想是贯彻党和国家的教育方针和新课标的精神,落实对儿童少年的素质教育,促进学生的全面发展。初步培养学生的抽象、概括能力;分析、综合能力;判断、推理能力和思维的灵活性、敏捷性等。着眼于发展学生数学能力,通过让学生多了解数学知识的来源和用途,培养学生良好的行为习惯。因此,在教学过程中应着重抓好以下几点:一、激发学生的学习兴趣兴趣,是一个人积极完成一件事物的重要前提和条件。二年级小学生年龄还比较小,稳定性较差,注意力容易分散。要改变这种现象,必须使小学生对数学课产生浓厚的兴趣,有了对学习的兴趣,他们就能全身心地投入学习中。那么,怎样才能使他们产生学习的兴趣呢?首先,“学生是数学学习的主人”。新授课,练习课更加讲究方法。新授课中,我们可以和学生建立平等的地位,象朋友一样讨论教学内容,走进小朋友的心里,使他们消除心理障碍和压力,使“要我学”转变为“我要学”。在练习课上,利用多种多样的练习形式完成练习。可以请小朋友当小老师来判断其他正确;或者通过比赛形式来完成。对于胜出的小组给予红花或星星等作为奖品,这样促进学生。其次,创设问题情境,激发学生兴趣。创设问题情境是在教学中不断提出与新内容有关的能激起学生的好奇心和思考的问题,是激发学生学习的兴趣和求知欲的有效方法,也可以培养学生解决问题能力。我在教学“时间”这部分时,由于这部分知识比较抽象,学生比较难理解,所以我在三个星期前就先告诉学生,三个星期后我们要学习时间,希望同学们多去了解。然后我有意创设一些有关时间的生活中的问题情境让大家接触,结果学生来了兴趣,在学这部分知识时再让学生通过观察、操作、猜测、交流、反思等活动中学习,学生学习的积极性很高,解决相关的问题就容易多了。二、设计符合小学生年龄特点的实践活动。二年级学生掌握的数学知识不算多,接触社会的范围也比较窄。因此,根据学生的实际情况,在教学“方向与位置”这部分时,我让学生通过判断学校的方向,再来判断教室的方向,最后再判断自己的位置方向,这样一次次、一层层地认识,加深对着部分知识的理解。多让他们实践,就能提高他们的实践能力。三、结合基础知识,加强各种能力和良好习惯的培养。在重视学生掌握数学基础知识的同时,也发展他们的智力,培养他们的判断、推理能力。例如:教学乘法口诀时,先引导学生观察找规律,再小组讨论,最后小组汇报得出结论。由于二年级的学生太小了,滋长能力比较差。所以导致教学工作有一定的难度,但我一定会努力认真的总结、反思,虚心求教,不断学习,提高自己。
节日爸爸妈妈陪我去超市,爸爸给我50元让我自己买学习用品和玩具,我买了3张动画碟片,每张6元,我又买了一个1元的玩具,又买了5本本子,每本1元,爸爸让我算算一共多少元。我刚学会了乘法,这还不容易,3×6=18(元),1×5=5(元),18+5+1=24(元),一共用了24元。我算的快吧! 东方明珠塔里的数学
实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 、、π 等。但仅仅以枚举的方式不能描述实数的全体。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于厘米),总可以用有理数来表示足够精确的测量结果(比如厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。[编辑]历史在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。[编辑]定义[编辑]从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, , , , ,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。[编辑]公理化方法设R是所有实数的集合,则:集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x, y和z:若x ≥ y则x + z ≥ y + z;若x ≥ 0且y ≥ 0则x'y ≥ 0。集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如;但是不存在有理数上确界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。[编辑]例子15 (整数) (有限小数)... (无限循环小数)π = ... (无限不循环小数) (无理数) (分数)[编辑]性质[编辑]基本运算在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。[编辑]完备性作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1, , , , , , ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。[编辑]完备的有序域实数集合通常被描述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。[编辑]高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。实数集拥有一个规范的测度,即勒贝格测度。实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。[编辑]拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。是可分空间。在中处处稠密。的开集是开区间的联集。的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。每个中的有界序列都有收敛子序列。是连通且单连通的。中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:.[编辑]扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。
小学数学课堂中有效提问的教学策略来源:中国教师报 作者:李红霞 韩华球 添加时间:2008-12-17 10:34:00一、课堂提问现状反思小学数学课堂中的提问是课堂教学的重要组成部分,是教学中使用频率最高的教学方法之一。经过教师精心设计、恰到好处的课堂提问,能有效地激发学生的好奇心和想象力,燃起学生对知识的探究热情,从而极大地提升课堂教学质量。但在日常教学中,教师的课堂提问仍然存在着一些问题。1. 提问“只顾数量,不求质量”。课堂中过多的一问一答,常常使学生缺少思维的空间和思考时间,表面上很热闹,但是实际上学生处于较低的认知和思维水平。2. 答案被老师完全控制。有时候,我们在不知不觉中,即使给了学生回答问题的机会,但是仍然会很不放心地打断学生的回答,或者草率地加入个人的评价,左右学生个人想法的表达。3. 候答时间过短。学生回答问题需要酝酿和思考的时间,教师在极短的时间就叫停,学生的思维无法进入真正的思考状态。4. 不注重利用课堂生成资源。教师不仅要会问,而且要会听,会倾听学生的回答,才能捕捉可利用的生成性资源,否则,问题就失去了它应有的意义。上述问题的存在,严重制约着课堂提问的有效性,使其低效甚至无效。二、有效提问的教学策略有效提问是相对“低效提问”和“无效提问”而提出来的。所谓“有效”,《现代汉语词典》对其解释是:“能实现预期目的;有效果。”“有效提问”,意味着教师提出的问题能够引起学生的回应或回答,且这种回应或回答让学生更积极地参与学习,由此获得具体的进步和发展。有效提问包含两个层面的含义:一是有效的问题;二是有效的提问策略。为了达到“教学过程最优化”,充分体现课堂提问的科学性与有效性,我们在实践中应注意以下几点。1. 备教材要“懂、透、化”这一点是绝大多数老师都知道的,但是,能否真正做到“深入”,却是我们每个老师需要反思的。笔者认为,对教材的研究,要达到“懂、透、化”的目标。“懂”,就是要理解教材,只有理解了教材,我们才能分清哪些问题是基础性的问题,我们就可以用“是什么”“怎么样”来提问;哪些问题是拓展性问题,我们就可以用“你是怎么想的”来提问;哪些问题是探究性问题,有必要让学生讨论、探究。“透”,就是要掌握教材的系统性、重点和难点,做到透彻掌握,融会贯通。“化”,就是要使自己不仅能够站在教师的角度,而且能够站在学生的角度去体会、感受学生的学。只有做到这样,教师才能游刃有余地提出问题引导学生思考,才能更大限度地提高教学质量。2.备学生要 “实”我们常说,“我们教师备课,不仅要备教材、备教法,而且要备学生、备学法”。所谓“实”,是指教师必须深入实际,了解自己所教学生的基础知识、接受能力、思维习惯,以及学习中的困难和问题等。只有真正了解了学生,才能有针对性地提问,恰当地把握问题的难易度,使得提问更加有效。比如,笔者在执教三年级数学第五册“可能性”一课时,针对可能性有大有小这一知识点,想在课堂教学中加入一些生活中常用的成语,这些成语能够巧妙地体现可能性的大小。第一次试讲,本以为很简单的成语,很多学生竟然没有听说过,更别说联系数学内容了。下课后,我及时反思自己,找来一部分学生,和他们聊天,了解他们对成语的认识和掌握情况。最后,我根据学生的情况,调整了要提问的成语内容。再上课时,学生很顺利地解释了成语的内容,同时紧密联系到了课上所学的内容。课下,不少学生都对这一环节印象深刻,追着老师想要再说说。3. 提问过程要突出学生主体思维来自疑问。一般教师只看到让学生解答疑难是对学生的一种训练,其实,应答还是被动的。要求学生自己提出疑问,自己发掘问题,是一种更高要求的训练。教师在设疑时应设法让学生在疑的基础上再生疑,然后鼓励、引导他们去质疑、解疑。从而提高学生发现问题、分析问题、解决问题的能力。在实际教学中,我们经常会很自然地问一问学生:“还有什么问题吗?”学生也往往很配合地回答:“没问题。”如果总是“没问题”,那这一现象就极不正常了,恐怕就真的“有问题”了。对任何一个数学问题的认识,都永远不可能所有的人始终保持在同一个水平上,必然有高有低,有学得轻松的,也有学得困难的。也就是说,应该“有问题”。“没问题”的问题,反映了教师的一种教育观念,似乎只有顺顺利利的一节课才是好课。其实不然,课上的这种“顺利”,只会培养出唯书唯上的人,不利于学生创造性思维的发展;课上的这种“顺利”也会使学生缺少一种精神,一种实事求是、刨根问底的精神。那么,如何解决这一问题呢?(1)改变观念,树立“问题”意识。教师要清楚地认识到:数学修养很重要的一条就是问题意识。因此,培养学生敢于提问题、善于提问题的习惯和能力,是数学教师肩负的责任之一,也是评价数学教学质量的标准之一。(2)为学生创造机会,使学生去思、去想、去问。教师不仅要在每节课堂上创造质疑机会,还要使学生真正开动脑筋想问题,能提出有价值的问题或自己不懂的问题。把这一时间真正利用起来,而不是走走过场而已。为了使学生会提问题,教师可以有意识地进行一些训练,可以站在学生的立场上,以学生的身份去示范提问题。比如,二年级教材学习了“角的认识”,对于什么叫角,角各部分名称,“角的大小与边的长短无关”这些内容,学生已经知道了。“还有什么问题吗?”学生答道“没问题”。真的没问题了吗?“那我来问个问题”我提出了一个问题:“角的大小为什么与边的长短无关呢?”经过讨论,大家明白了,角的边是射线,射线是没有长短的,所以,角的大小与边的长短无关。角的大小决定于两条边张开的程度。教师从学生的角度示范提问题,久而久之,也就让学生有了提问题的意识,在引导学生提问题的同时,也培养了学生积极思考问题和解决问题的能力。(3)“善待”学生的提问和回答。无论学生提什么样的问题,无论学生提的问题是否有价值,只要是学生真实的想法,教师都应该首先对孩子敢于提问题给予充分的肯定,然后对问题本身采取有效的方法予以解决,或请其他学生解答。对于颇有新意的问题或有独到的见解,不仅表扬他勇于提出问题,还要表扬他善于提出问题,更要表扬他提出问题的价值所在,进而引导大家学会如何去深层次地思考问题。只有这样,学生才能从提问题中感受到更大的收获,才会对提问题有安全感,才会越来越爱提问题,越来越会提问题。对于学生的回答,我们要慎用诸如“很好”、“非常好”、“不是,不对”等习惯性的评价。这样的评价过于强化对与错,天长日久,学生的注意力会集中于教师想要的东西上。我们可以适当地多使用一些中性的、接纳性的或者探究性的评价。比如:“噢,这是一种有道理的思路,还有其他思路吗?”“这个想法不错,我们还能补充点什么?”“很好的主意,但是我们怎么知道……”有针对性地鼓励学生,满足学生的需要,鼓励学生继续学习。总之,在实践中,教师要联系实际,优化提问内容,把握提问时机,讲究提问技巧,不断提高自己提问的能力,同时也要培养学生提出问题和发现问题的能力,真正提高课堂教学质量。(作者单位系北京师范大学实验小学、人民教育出版社)小学数学课堂教学中“问题解决”初探小学数学课堂教学中“问题解决”初探 内容提要: 在数学课堂教学中,围绕“数学问题”这一主题,寻求切实可行的解题策略,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用问题。从问题提出——解决及应用的过程中提高学生的数学素质,提高学生的创新意识及实践能力。关键词:小学数学 问题解决正 文: 全日制义务教育《数学课程标准》(实验稿)中课程具体目标明确提出:要让学生“初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。”“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。”基于这一基本要求,在数学课堂教学中,我们可以围绕“问题”这一主题,寻求切实可行的方法,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用。从问题提出——解决的过程中提高学生的数学素质,提高学生的创新意识及实践能力。基于以上认识,我们在数学课堂教学中进行了初步探索,获得了一些粗浅的认识。一、引导学生从数学的角度提出问题。 爱因斯坦认为“提出一个问题往往比解决一个问题更重要,因为解决问题也仅仅是一个数学上或实验上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。”在小学数学教学中,培养学生的提问能力,对于开发学生智力,发展学生思维,变被动学习为主动地探究,对于真正提高学生的全面素质有积极的作用。那么,怎样才能使学生从数学的角度提出问题呢? 1、创设问题情境,激发学生提问。生活蕴涵着大量的数学知识,数学问题多在具体的生活情境中产生。教师要抓住学生思维活动的热点和焦点,根据学生认知的“最近发展区”,为学生提供丰富多彩的背景材料,从学生熟悉的事物、事件等入手,采用现实再现、猜迷、讲故事、游戏、竞赛等手段,创设生动有趣的、具有挑战性的问题情境,使学生自主产生问题,激发探究的欲望。如:在教学《连乘应用题》时,教师创设这样一个问题情境:星期天,你妈妈让你去买两箱牛奶,那时你会思考那些问题?学生根据自己的生活经验,纷纷发言:每箱牛奶多少钱,至少该带多少钱?;也可以是每瓶牛奶多少钱?每箱牛奶有几瓶?至少带多少钱?······这样,学生提出了许多切题的有价值的问题。教师及时提问,“你准备怎样解决以上问题?”通过讨论得出两个方法:看标价说明;问售货员。这时可呈现两种情境: ①通过调查知,每箱牛奶48元,买2箱。 ②通过调查知,每箱牛奶24瓶,每瓶2元,买2箱。并提问:“你能根据以上两条信息,解决哪些数学问题?学生马上提出:根据调查①可解决买两箱牛奶共需多少钱?;根据调查②可解决一共买了多少瓶牛奶、买一箱需多少钱、买两箱需多少钱?等数学问题。接着教师组织学生通过独立思考、合作交流等形式解决了以上问题•……这样,教师通过创设学生熟知的生活中的购物情境,给学生提供一个广阔的思维空间,让他们自主的、全方位的、多角度的思考问题。 2、发扬民主意识,培养学生敢于提问、善于提问的能力。“好学多问”是孩子的一种天性,学生提出问题标志着其思维的萌发,小学生数学问题的提出直接体现他们对生活中数学的思考能力。但是,由于小学生没有掌握好提问的方法和技巧,课堂表现为“怕提问”。要学生提问,就要培养学生敢于提问的勇气和胆量。教师应尊重每一位学生,通过自己的言行、态度,给学生一个个安全、信任、尊重的情感信息,激发学生的情感共鸣,实现自主提出问题的学习行为。曾有这样一个课例:一位语文教师在教学中,一位学生对“四万万同胞”的“四万万”提出了疑问,许多学生发出哄笑。这位教师不但没有责怪学生愚昧无知,反而鼓励了他,同时在解决“四万万”就是“四亿”概念的基础上,进行“为什么用四万万而不用四亿“的研究,加深了学生对文章的理解。不但获得良好的教学效果,而且使提问学生增强了学习的信心,培养了学生敢于提问的决心。可见,只有当学生能积极思考,大胆表述时,教师才知道学生“疑”在哪里,“惑”于何处。才能对所教知识进行有效的指导、点拨和调整。反之,如果教师把学生的一些发自内心却又异想天开的问题,看作是旁门左道,是“有意捣乱”采取压制的方法,那么,久而久之,学生思考问题、提出问题的积极性、主动性将会大大降低,甚至被扼杀,成为真正接受知识的“容器”。所以,发扬民主意识是学生敢于提问的前提,是开启思维之门器官的钥匙。 3、引导学生积极反思,进一步掌握提出数学问题的针对性。学生在学习活动中的反思是学生以自己的学习活动过程作为思考对象来对自己的行为、决策以及所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进能力发展的途径。在数学教学过程中,经常引导学生对本堂课所涉及的数学问题进行自觉反思,逐渐明确哪些问题是有价值的,哪些问题是无关紧要的,使以后提问更贴近所学数学内容,从而提高学生善于提出数学问题的能力。二、引导学生灵活地、创造性地解决问题。 引导学生从数学的角度提出问题仅仅是教学的开始,“问题解决”的核心内容就是要让学生灵活地解决问题。同时,在解决问题过程中,其活动的价值不只是获得具体的结论,更多的是使学生在解决问题的过程中经历、体验知识产生的原始状态,体会到解决问题的不同策略,每一个人都应当有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。这样,在鼓励个性发挥的意义之下,学生的创新精神的培养才成为可能。怎样丰富学生“问题解决”的实践过程,在灵活多样的问题解决过程中,尽量使每位学生发挥其思维的最大潜能,使他们感到脑力劳动中取得成功的喜悦,已成为我们数学课堂教学中思考的重要课题。 首先,要激励学生自主探究,寻求方法。数学学习活动中,学生是学习的主体,在学生进入角色以后,教师应留出足够的时间让学生探究交流,寻求解决问题的方法,并发表自己的独特见解和感受。有一位教师在叫“两位数加一位数(进位)”时,一改往常教材中的“讲解式”(摆小棒)的呈现方式为学生自主探究的“问题发现式”,这位教师是这样设计的: “爸爸让明明计算18+7,明明冥思苦想了一会儿,向同学们求助,谁有妙法帮我吗?”一石激起千层浪,同学们顿时情绪高涨,积极思考,此刻教师及时组织学生讨论,通过小组讨论、同桌互说等形式,充分发挥集体的作用,体现团结合作的精神,让每个学生都有主动参与的机会,加强了学生间多向交流。最后,学生想出了多种方法:有把18看成20(20+7-2)的;有把18分成13和5(13+7+5)的;有把7分成2和5(18+2+5)的;有数手指的;也有用竖式计算的,等等。 学生通过自主探究后,用语言表达出自己的思维过程,这正是学生自主创新的一种体现。 问题一旦经过一番努力后被解决,学生就会有紧张愉快的体验,有成就感、自豪感、价值感,这些心理倾向是激励学生进一步探究的源动力。 其次,可建立学习小组。学生的发展存在者不平衡性,无论哪个班的学生,他们的智力发展水平、所具有的能力以及他们对生活、对数学问题的认识是各不相同的。在课堂上,面临着要解决的一个个数学问题,学生的解决方法是各不相同的。为了使不同发展水平的学生都能解决问题,我们可采用小组学习的方法,建立学习小组,小组中学习水平上、中、下的学生进行合理搭配,推荐一个学习水平较高的学生担任组长,让不同水平的层次的学生的信息联系和反馈信息在多层次、多方位上展开。这样,小组成员对所要解决的数学问题进行适时的合作交流,互相探讨解决问题的最佳策略与方法,互相取长补短,共同达到圆满解决问题的目的。在经常性的合作交流中,提升理解问题、解决问题的能力。 再次,要鼓励学生动手实践,在操作探索中解决数学问题。皮亚杰认为:“认识一个客体,必须动之与手”、“一切真知都应由学生自己获得,或由他重新‘发明’,至少由他重新构建,而不是草率地传递给他。”因此,教师在教学中因突破教材的局限,变传递结论为鼓励发现新知。事实证明,学生提出的问题,有很多可以让学生自己通过操作探究而获得。如针对学生所提问题“圆柱上下两个底面的面积相等吗?”教师可以不直接告诉学生,而引导学生动手操作,让他们对自己的圆柱模型进行自主操作,讨论“有什么方法验证圆柱两个底面是否相等?”这样学生通过剪、量、叠等多种方法,进行积极地讨论、探索,得出“把上下两个底面剪下叠起来,是否完全重合”;“量上下两个底面的直径、半径、周长,是否相等”;“上下两个底面的对称轴是否相等”等多种检验方法,并从中得出“圆柱上下两个底面面积相等”这一结论。学生通过这样的学习过程,自己动手、动脑、动口、动眼,解决了问题,使其即知其然,又知其所以然。 又如,在学习“平行四边形”这一内容时,一位教师设计了这样一题:“请在下面平行四边形上画一直线,使分成的两部分面积相等。”于是学生纷纷投入“如何分”的学习活动中,热烈地讨论、大胆地尝试、独立地操作、积极地思考……结果找到了不同的解题方法。(如图) ……得出,这样的线可画无数条。 但教师并不到此为止,而是接着提问:这些平分线有什么共同的特点吗?再次激起了学生的探究热情,学生通过讨论明白了只要是通过平行四边形中心点的直线,都能平分这个平行四边形,同时孕伏了平行四边形是中心对称图形这一知识。这样的处理使学生获取知识、拓展思路、培养能力有机的结合起来了。三、引导学生合理地应用知识,发展学生的应用意识。 学生的应用意识主要表现在“认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其现实背景,并探索其应用价值。”(数学课程标准) 学生学习数学不但要弄清课堂所提的问题,掌握现成的数学知识和技能,而且要知道如何运用课堂上所解决问题的方法自觉地、有意识地认识周围的事物,理解并处理有关问题,使所学知识成为与生活和社会有密切联系的内容,真正做到数学“从生活中来,再用之于生活”。在这方面,教师要自觉做到学生“用数学”的引导者。例如,学了“统计知识、价格与购物计算、长度、面积、体积、容积等测定”后,我们要尽可能提供给学生实际操作的机会,引导学生把数学用之于生活,我们可以让学生量一量教室的长、宽;量一量黑板、课桌、书本的长和宽;量一量家中家具的长和宽、爸爸妈妈的身高;测一测爸爸妈妈的体重;算一算逛街所购货物的价格等,在“用数学”中,体验所学知识的作用,更大地调动学生学习的积极性,激发学生解决问题的兴趣,又使学生从中品尝到学以致用的乐趣。又如,在学习了“利率、利息”等概念后,一位教师创设情景,引导学生沟通数学与现实的联系,他编制了这样的题目:“今天,爸爸把这月领到的工资1850元存入银行,所存定期三年,那么三年后的今天,爸爸取钱时,可取回多少元?” 这样的问题,与生活非常贴近,容易激起学生的兴趣,他们通过调查,了解银行利率,并应用自己刚学的百分数知识,通过实际计算,学生不仅巩固学习知识,了解了金融知识,从而增长了见识,培养了实际应用数学的能力。 学生的数学知识就是在不断地发现问题、不断地探究问题、不断地解决问题、不断地应用问题的过程中不断地提高、和谐地发展。
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言 那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
309 浏览 5 回答
103 浏览 3 回答
317 浏览 3 回答
252 浏览 7 回答
189 浏览 5 回答
350 浏览 5 回答
169 浏览 4 回答
256 浏览 3 回答
233 浏览 3 回答
285 浏览 3 回答
307 浏览 5 回答
329 浏览 4 回答
251 浏览 5 回答
273 浏览 4 回答
325 浏览 5 回答