结果是√π/2。
设u=∫[-∞,+∞] e^(-t^2)dt
两边平方: 下面省略积分限
u^2=∫e^(-t^2)dt*∫e^(-t^2)dt 由于积分可以随便换积分变量
=∫e^(-x^2)dx*∫e^(-y^2)dy 这样变成一个二重积分
=∫∫ e^(-x^2-y^2)dxdy 积分区域为x^2+y^2=R^2 R-->+∞
用极坐标:
=∫∫ e^(-r^2)*rdrdθ
=∫ [0-->2π]∫ [0-->R] e^(-r^2)*rdrdθ 然后R-->+∞取极限
=2π*(1/2)∫ [0-->R] e^(-r^2)d (r^2)
=π[1-e^(-R^2)] 然后R-->+∞取极限
=π
这样u^2=π,因此u=√π
所以你的问题结果是√π/2
扩展资料
反常积分总共就分两类:
1、积分上下限无界。
2、积分区域有界,函数在边界有暇点。
针对第二类,有如下的计算技巧。
∫baf(x)dx∫abf(x)dx,设在(a,b]上,在a处是暇点。
limx→a+f(x)(x−a)δ存在,δ∈(0,1)limx→a+f(x)(x−a)δ存在,δ∈(0,1) ,则积分收敛。
设在[a,b)上,b处是暇点。
limx→b−f(x)(x−b)δ存在,δ∈(0,1)limx→b−f(x)(x−b)δ存在,δ∈(0,1) ,则积分收敛。
我们说在(0,+∞)(0,+∞)上看积分的收敛性是考虑被积函数要更快趋近于0,而在(0,1)区间上,是说f(x)更慢趋近于0,本质都是让函数的曲线更快靠近参考线。只不过一个水平,一个垂直。因此当函数更快靠近水平线时,将更慢靠近垂直,反之亦然。