观察得y=-e^(-x)的导数是y=e^(-x)所以他的定积分是 -e^(-∞)-(-e^0)=1
可以上网查书籍目录: 前言第一章 函数、极限与连续第一节 函数第二节 极限第三节 函数的连续性自测题(一)自测题(二)自测题答案第二章 导数与微分第一节 导数概念第二节 导数的计算第三节 函数的微分自测题(一)自测题(二)自测题答案第三章 中值定理与导数应用第一节 中僮定理第二节 洛必达法则与泰勒公式第三节 函数翡单调性、极值和凸性自测题(一). 自测题(二)自测题答案第四章 不定积分第一节 原函数与不定积分的概念第二节 利用凑微分法求不定积分第三节 换元积分法与分部积分法第四节 几种特殊类型函数的积分自测题(一)自测题(二)自测题答案第五章 定积分第一节 定积分的概念与性质第二节 定积分的计算方法第三节 反常积分第四节 与定积分相关的综合性问题自测题(一)自测题(二)自测题答案第六章 定积分的应用 第一节 极坐标简介第二节 定积分的应用自测题(一)自测题(二)自测题答案第七章 向量代数与空间解析几何第一节 向量代数第二节 空间曲面与空间曲线第三节 平面与直线方程自测题(一)自测题(二)自测题答案第八章 多元驻散微分法及应用第一节 多元函数的概念第二节 多元函数微分法第三节 多元函数微分法的应用自测题(一)自测题(二)自测题答案第九章 重积分第一节 二重积分的概念第二节 二重积分的计算第三节 三重积分的计算第四节 重积分的应用自测题(一)自测题(二)自测题答案第十章 曲线积分与曲面积分第一节 对弧长的曲线积分第二节 对坐标的曲线积分第三节 格林公式第四节 对面积的曲面积分第五节 对坐标的曲面积分第六节 高斯公式和Stokes公式自测题(一)自测题(二)自测题答案第十一章 无穷级数第一节 常数项级数及其性质第二节 常数项级数敛散性判别法第三节 幂级数第四节 函数展开成幂级数第五节 傅里叶级数自测题(一)自测题(二)自测题答案第十二章 微分方程第一节 常微分方程的基本概念第二节 一阶微分方程第三节 可降阶的高阶微分方程第四节 高阶线性和常系数线性方程
结果是√π/2。
设u=∫[-∞,+∞] e^(-t^2)dt
两边平方: 下面省略积分限
u^2=∫e^(-t^2)dt*∫e^(-t^2)dt 由于积分可以随便换积分变量
=∫e^(-x^2)dx*∫e^(-y^2)dy 这样变成一个二重积分
=∫∫ e^(-x^2-y^2)dxdy 积分区域为x^2+y^2=R^2 R-->+∞
用极坐标:
=∫∫ e^(-r^2)*rdrdθ
=∫ [0-->2π]∫ [0-->R] e^(-r^2)*rdrdθ 然后R-->+∞取极限
=2π*(1/2)∫ [0-->R] e^(-r^2)d (r^2)
=π[1-e^(-R^2)] 然后R-->+∞取极限
=π
这样u^2=π,因此u=√π
所以你的问题结果是√π/2
扩展资料
反常积分总共就分两类:
1、积分上下限无界。
2、积分区域有界,函数在边界有暇点。
针对第二类,有如下的计算技巧。
∫baf(x)dx∫abf(x)dx,设在(a,b]上,在a处是暇点。
limx→a+f(x)(x−a)δ存在,δ∈(0,1)limx→a+f(x)(x−a)δ存在,δ∈(0,1) ,则积分收敛。
设在[a,b)上,b处是暇点。
limx→b−f(x)(x−b)δ存在,δ∈(0,1)limx→b−f(x)(x−b)δ存在,δ∈(0,1) ,则积分收敛。
我们说在(0,+∞)(0,+∞)上看积分的收敛性是考虑被积函数要更快趋近于0,而在(0,1)区间上,是说f(x)更慢趋近于0,本质都是让函数的曲线更快靠近参考线。只不过一个水平,一个垂直。因此当函数更快靠近水平线时,将更慢靠近垂直,反之亦然。
数学与应用数学简介培养层次:本科授予学位:理学学士标准学制:四年修业年限:三至六年培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。培养要求:本专业学生主要学习数学与应用数学的基础理论与基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件方面等基本能力。毕业生应获得以下几方面的知识和能力:1. 具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;2. 具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用领域的基本知识;3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;4. 了解国家科学技术等有关政策和法规;5. 了解数学科学的某些新发展和应用前景;6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法,具有一定的科学研究和教学能力。专业特色:本专业对于学生实行厚基础、宽口径分类培养的原则,在基础课阶段将受到分析类、代数类、几何类、随机数学等方面完整的良好的数学基本功训练,然后,更具学生的兴趣和需求,进行专门化培养,对于有意从事理论研究或理论水平要求较高的学生让他们选学进一步的数学基础理论课程;对于有意从事与软件方面有关的学生,让他们选学一些计算机类课程;对于那些有意从事金融方面工作的学生,让他们选学一些保险精算类课程:此外,还可以工科专业为依托,进行其他门类的专业化训练。这样,学生一门进,多门出,既有扎实的数学基础,又有广泛的应用水平。主干学科:数学、信息与计算科学、统计学。主要课程:分析学、代数学、几何学、概率论、物理学、数学模型(数学实验)、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。主要实践性教学环节:包括军事训练、认识实习、计算机实习、生产实习、课程设计、科研训练或毕业论文等,一般安排10-20周。学生继续深造方向:本学科专业有硕士学位授予权;学生就业情况:在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作。师资情况:教师总数31名,其中教授3人,副教授14人,博导1人,硕导12人。
无穷对有限转化方法分析 [即讨论如何用几何方法把无穷级数的微积分转化为有限可积(结果具有通用性)]想大点的还可以:面性数据化为点性数据分析
我看微分几何
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!
中职数学教学论文题目
1、线性方程的叠加原理及其应用
2、作为函数的含参积分的分析性质研究
3、周期函数初等复合的周期性研究
4、“高等代数”知识在几何中的应用
5、矩阵初等变换的应用
6、“高等代数”中的思想 方法
7、中职数学教学中的数学思想和方法
8、任N个自然数的N级排列的逆序数
9、“高等代数”中多项式的值,根概念及性质的推广
10、线性变换“可对角化”的条件及“对角化”方法
11、数域概念的等价说法及其应用
12、中职数学教学与能力培养
13、数学能力培养的重要性及途径
14、论数学中的基本定理与基本方法
15、论电脑、人脑与数学
16、论数学中的收敛与发散
17、论小概率事件的发生
18、论高等数学与初等数学教学的关系
19、论数学教学中公式的教学
20、数学教学中学生应用能力的培养
21、数学教与学的心理探究
22、论数学思想方法的教与学
23、论数学家与数学
24、对称思想在解题中的应用
25、复数在中学数学中应用
26、复变函数论思想方法在中学数学教学中的应用
27、复变函数论思想方法在中学数学竞赛中的应用
28、代数学基本定理的几种证明
29、复变函数的洛必达法则
30、复函数与实函数的级数理论综述
31、微积分学与哲学
32、实数完备性理论综述
33、微积分学中辅助函数的构造
34、闭区间上连续函数性质的推广
35、培养学生的数学创新能力
36、教师对学生互动性学习的影响
37、学生数学应用意识的培养
38、数学解题中的 逆向思维 的应用
39、数学直觉思维的培养
40、数学教学中对学生心理素质的培养
41、用心理学理论指导数学教学
42、开展数学活动课的理论和实践探索
43、《数学课程标准》解读
44、数学思想在数学教学中的应用,学生思维品质的培养
45、数形结合思想在中学数学中的应用
46、运用化归思想,探索解题途径
47、谈谈构造法解题
48、高等数学在中学数学中的应用
49、解决问题的策略思想--等价与非等价转化
50、挖掘题中的隐含条件解题
51、向量在几何证题中的运用
52、数学概念教学初探
53、数学 教育 中的问题解决及其教学途径
54、分类思想在数学教学中的作用
55、“联想”在数学中的作用研究
56、利用习题变换,培养学生的思维能力
57、中学数学学习中“学习困难生”研究
58、数学概念教学研究
59、反例在数学教学中的作用研究
60、中学生数学问题解决能力培养研究
61、数学教育评价研究
62、传统中学数学教学模式革新研究
63、数学研究性学习设计
64、数学开放题拟以及教学
65、数学课堂 文化 建设研究
66、中职数学教学设计及典型课例分析
67、数学课程标准的新增内容的尝试教学研究
68、数学课堂教学安全采集与研究
69、中职数学选修课教学的实话及效果分析
70、常微分方程与初等数学
71、由递推式求数列的通项及和向量代数在中学中的应用
72、浅谈划归思想在数学中的应用
73、初等函数的极值
74、行列式的计算方法
75、数学竟赛中的不等式问题
76、直觉思维在中学数学中的应用
77、常微分方程各种解的定义,关系及判定方法
78、高等数学在中学数学中的应用
79、常微分方程的发展及应用
80、充分挖掘例题的数学价值和 智力开发 功能
小学数学教学论文题目参考
1、小学数学教师几何知识掌握状况的调查研究
2、小学数学教师教材知识发展情况研究
3、中日小学数学“数与代数”领域比较研究
4、浙江省Y县县域内小学数学教学质量差异研究
5、小学数学教师教科书解读的影响因素及调控策略研究
6、中国、新加坡小学数学新课程的比较研究
7、小学数学探究式教学的实践研究
8、基于教育游戏的小学数学教学设计研究
9、小学数学教学中创设有效问题情境的策略研究
10、小学数学生活化教学的研究
11、数字 故事 在小学数学课堂教学中的应用研究
12、小学数学教师专业发展研究
13、中美小学数学“统计与概率”内容比较研究
14、数学文化在小学数学教学中的价值及其课程论分析
15、小学数学教师培训内容有效性的研究
16、小学数学课堂师生对话的特征分析
17、小学数学优质课堂的特征分析
18、小学数学解决问题方法多样化的研究
19、我国小学数学新教材中例题编写特点研究
20、小学数学问题解决能力培养的研究
21、渗透数学思想方法 提高学生思维素质
22、引导学生参与教学过程 发挥学生的主体作用
23、优化数学课堂练习设计的探索与实践
24、实施“开放性”教学促进学生主体参与
25、数学练习要有趣味性和开放性
26、开发生活资源,体现数学价值
27、对构建简洁数学课堂的几点认识和做法
28、刍议“怎样简便就怎样算”中的“二指技能”现象
29、立足现实起点,提高课堂效率
30、宁缺毋滥--也谈课堂教学中有效情境的创设
31、如何让“生活味”的数学课堂多一点“数学味”
32、有效教学,让数学课堂更精彩
33、提高数学课堂教学效率之我见
34、为学生营造一片探究学习的天地
35、和谐课堂,让预设与生成共精彩
36、走近学生,恰当提问--谈数学课堂提问语的优化策略
37、谈小学数学课堂教学中教师对学生的评价
38、课堂有效提问的初步探究
39、浅谈小学数学研究性学习的途径
40、能说会道,为严谨课堂添彩
41、小学数学教学中的情感教育
42、小学数学学困生的转化策略
43、新课标下提高日常数学课堂效率的探索
44、让学生参与课堂教学
45、浅谈新课程理念下如何优化数学课堂教学
46、数学与生活的和谐之美
47、运用结构观点分析教学小学应用题
48、构建自主探究课堂,促进学生有效发展
49、精心设计课堂结尾巩固提高教学效果
50、浅谈数学课堂提问艺术
51、浅谈发式教学在小学数学教学中的运用
52、浅谈数学课堂中学生问题意识的培养
53、巧用信息技术,优化数学课堂教学
54、新课改下小学复式教学有感
55、让“对话”在数学课堂中焕发生命的精彩
56、小学几何教学的几点做法
初中数学教学论文题目
1、翻转课堂教学模式在初中数学教学中的应用研究
2、数形结合思想在初中数学教学中的实践研究
3、基于翻转课堂教学模式的初中数学教学设计研究
4、初中数学新教材知识结构研究
5、初中数学中的研究性学习案例开发实施研究
6、学案导学教学模式在初中数学教学中的实践与研究
7、从两种初中数学教材的比较看初中数学课程改革
8、信息技术与初中数学教学整合问题研究
9、初中数学学习困难学生学业情绪及其影响因素研究
10、初中数学习题教学研究
11、初中数学教材分析方法的研究
12、初中数学教师课堂教学目标设计的调查研究
13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究
14、初中数学教师数学教学知识的发展研究
15、数学史融入初中数学教科书的现状研究
16、初中数学教师课堂有效教学行为研究
17、数学史与初中数学教学整合的现状研究
18、数学史融入初中数学教育的研究
19、初中数学教材中数学文化内容编排比较研究
20、渗透数学基本思想的初中数学课堂教学实践研究
21、初中数学教师错误分析能力研究
22、初中数学优秀课教学设计研究
23、初中数学课堂教学有效性的研究
24、初中数学数形结合思想教学研究与案例分析
25、新课程下初中数学教科书的习题比较研究
26、中美初中数学教材难度的比较研究
27、数学史融入初中数学教育的实践探索
28、初中数学课堂教学小组合作学习存在的问题及对策研究
29、初中数学教师数学观现状的调查研究
30、初中数学学困生的成因及对策研究
31、“几何画板”在初中数学教学中的应用研究
32、数学素养视角下的初中数学教科书评价
33、北师大版初中数学教材中数形结合思想研究
34、初中数学微课程的设计与应用研究
35、初中数学教学生成性资源利用研究
36、基于问题学习的初中数学情境教学模式探究
37、学案式教学在初中数学教学中的实验研究
38、数学文化视野下的初中数学问题情境研究
39、中美初中数学教材中习题的对比研究
40、基于人教版初中数学教材中数学史专题的教学探索
41、初中数学教学应重视学生直觉思维能力的培养
42、七年级学生学习情况的调研
43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考
44、新课程背景下学生数学学习发展性评价的构建
45、初中数学学生学法辅导之探究
46、合理运用数学情境教学
47、让学生在自信、兴趣和成功的体验中学习数学
48、创设有效问题情景,培养探究合作能力
49、重视数学教学中的生成展示过程,培养学生 创新思维 能力
50、从一道中考题的剖析谈梯形中面积的求解方法
51、浅谈课堂教学中的教学机智
52、从《确定位置》的教学谈体验教学
53、谈主体性数学课堂交流活动实施策略
54、对数学例题教学的一些看法
55、新课程标准下数学教学新方式
56、举反例的两点技巧
57、数学课堂教学中分层教学的实践与探索
58、新课程中数学情境创设的思考
59、数学新课程教学中学生思维的激发与引导
60、新课程初中数学直觉思维培养的研究与实践
2021各阶段数学教学论文题目相关 文章 :
★ 优秀论文题目大全2021
★ 大学生论文题目大全2021
★ 大学生论文题目参考2021
★ 优秀论文题目2021
★ 2021毕业论文题目怎么定
★ 2021教育学专业毕业论文题目
★ 2021优秀数学教研组工作总结5篇
★ 2021数学教学反思案例
★ 2021交通运输方向的论文题目及选题
★ 小学数学教学论文参考(2)
我猜你是问 M(x,y)dx+N(x,y)dy=0 存在解析解的充要条件由全微分性质,若存在连续函数 T(x,y),满足 dT(x,y)=M(x,y)dx+N(x,y)dy ,其充要条件为:∂M(x,y)/∂y=∂N(x,y)/∂x
充要条件是dM/dy=dN/dx(不方便打 ,都是偏导) 即:Ndu/dx-Mdu/dy=(dM/dy -dN/dx)u .....(1) (不方便打 ,都是偏导) 证明 :上面的等式是以u为未知函数的一阶线性偏微分方程,一般情况下,通过方程(1)来求积分因子,得到方程M(x+y)dx+N(x+y)dy=0的解,与求解M(x+y)dx+N(x+y)dy=0本身同样困难,但是在某些特殊的情况中,也可以方便的解出(1)的一个解u,例如,如果方程M(x+y)dx+N(x+y)dy=0存在一个只于x有关的积分因子u=u(x)时,则du/dy=0,于是(1)式变化为: 1/u *du/dx =(dM/dy-dN/dx)/N。。。。(2) 由此可知,方程M(x+y)dx+N(x+y)dy=0具有一个只与x有关的积分因子的必要条件是(2)式右边不含y 即: M(x+y)dx+N(x+y)dy恒等于u(x)。。。(3) 其中u(x)是x的函数,反之,若(3)成立,则以u(x)代入(2)中,得到: du/u =u(x)dx 于是求得 u(x)=e^(u(x)的积分) 显然,它满足(1)的,故知它是M(x+y)dx+N(x+y)dy=0的一个积分因子,这就证明了M(x+y)dx+N(x+y)dy=0具有一个只与x有关的积分因子的的充分必要条件是(3)式成立 同样的,假设M(x+y)dx+N(x+y)dy=0具有一个只与y有关的积分因子的充分必要条件是: M(x+y)dx-N(x+y)dy恒等于u(y) 其中u(y)是y的函数 同样按上面的方法解出 u=e^(u(y)的积分) 这个u同样是它的积分因子 所以方程M(x+y)dx+N(x+y)dy=0分别具有形如u(x+y)和u(xy)的积分因子的充要条件是: dM/dy=dN/dx 即:Ndu/dx-Mdu/dy=(dM/dy -dN/dx)u 很好的一个,你可以到高等数学查看,有类似的题目,没有可以找我
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
圆的面积教学反思
《圆的面积》教学反思1
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
一、动手操作,推导圆的面积公式
学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
二、多媒体辅助教学,教学内容立体呈现
通过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的'刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学。
《圆的面积》教学反思2
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
一、以旧引新,渗透“转化”思想
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近平行四边形或长方形。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的形成
通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的形成。
四、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。
圆是从学习直线图形的认识, 到学习曲线图形的认识, 不论是学习内容的本身, 还是研究问题的方法, 都有所变化, 是学习上的一次飞跃。 因此, 教学中, 我让学生在观察、 感知的基础上, 动手操作, 拼一拼, 比一比, 看一看, 想一想, 分组讨论、 合作学习, 老师恰当点拨, 适时引导。 通过本节课的教学, 暴露出了一些实际问题, 下面我将从以下几方面反思本节课的课堂教学。 一、 引导学生发现“转化” 。 本课开始, 我引导学生回忆学过图形面积公式, 并结合回忆上学期探究平行四边形、三角形、 梯形面积的探究方法, 引导学生发现“转化” 是探究新的数学知识、 解决数学问题的好方法, 为下面探究圆的面积计算的方法奠定基础识储备, 为新知的“再创造” 做好知识的准备。 二、 直观演示, 加深理解 让学生来做个实验讨论。 每个同学手中都有一个圆, 现在平均分成 16 份, 自己拼拼看, 能拼成什么图形? 并想想它与圆有怎样的关系。 这样, 通过学生操作观察, 比较、 分析, 发现圆的面积、 周长、半径和拼成的近似长方形面积、 长、 宽之间的关系, 让学生推导出圆的面积计算公式。 这样由扶到放, 由现象到本质地引导, 又使学生始终参与到如何把圆转化为长方形的探索活动中来。 学生思维在交流中碰撞, 在碰撞中发散, 在想象中得以提升。 思维的能动性和创造性得到充分激发, 探索能力、 分析问题和解决同题的能力得到了提高。 三、 练习设计层层深入。 本节课我设计了三个练习: 1、 让学生根据已知的半径求圆的面积。 2、 让学生根据已知的直径求圆的面积。 3、 利用已有知识解决生活中的实际问题。 练习的设计上由易到难, 由形象到抽象, 由具体到抽象。 先是基础知识的练习; 然后用圆的知识解决实际问题; 最后发挥自己的智慧解决生活中的实际问题。 每一道题都运用了本节课的知识, 每一道题目的呈现方式又都不同。 这样既能让后进生跟得上, 又能让优等生吃得饱, 从而让全班同学共同进步。 三、 存在的不足。 本课教学还有许多不足之处, 在教学过程中, 由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考, 去推导。 细节的设计还要精心安排。 特别是学生在口述推导的过程中, 导出的太快, 公式推导不明显, 怎样出来的结果演示太快, 学生不易消化。 这个问题在以后的教学过程中要注意细化。 ……希望以后通过自己的努力, 教学水平能够不断提高。
《圆的面积》是在学生掌握了平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。以下是我整理的六年级数学圆的面积教学反思,希望可以提供给大家进行参考和借鉴。
六年级数学圆的面积教学反思范文一
圆是小学阶段学习的最终一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
经过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不一样
本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
经过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积学生有点不知所措。此刻回想起来,我不应当一上来就问如何计算圆的面积,而应当先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最终得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决问题的本事得到了提高。但值得反思的是,我总是抱着一节课应当解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应当异常注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是经过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应当给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索本事、分析问题和解决同题的本事得到充分提高。另外,在细节的设计还要精心安排。
六年级数学圆的面积教学反思范文二
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
一、动手操作,推导圆的面积公式
学生经过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。经过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决问题的本事得到了提高。
二、多媒体辅助教学,教学资料立体呈现
经过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。经过计算机的声、光、色、形,综合表现本事,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的进取性、主动性、创造性。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学。
六年级数学圆的面积教学反思范文三
《圆的面积》是在学生掌握了平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本节教学我主要从以下几个方面来进行教学:
一、在探究之前,先引导学生回忆以前探索平面图形面积的方法,引导学生发现“转化”的方法,为探究圆的面积计算方法奠定基础。然后经过课件让学生观察一组趣味的图形的变化,从而感知随着正多边形边数的增加,图形越来越接近圆形。学生观察到了“直线图形”和“曲线图形”之间的联系,从而进一步探究圆的面积方法。
二、让学生大胆猜测圆的面积怎样推导。圆的周长和直径、半径有关系,圆的面积和什么有关系?学生猜测后,再拿出准备好的两个同样大小的圆,将其中一个平均分成若干份,然后拼成长方形,学生动手剪拼好后观察比较,发现把一个圆平均分成的份数越多,这个图形就越接近长方形。再比较圆形和这个拼成的图形之间的关系。经过观察、分析,发现圆的面积就是拼成长方形的面积,圆的周长一半就是长方形的长、圆的半径就是长方形的宽。最终让学生推导出圆的面积计算公式。
学生经历公式的推导过程,不仅仅加深他们对公式的理解,并且还有效的培养了学生的逻辑思维本事,学生在求知的过程中品尝到成功的喜悦。值得反思的是,为了赶时间,我总是更多的关注举手回答问题的学生,没给学困生留下足够的思考时间,这也是我今后课堂中应当注意的地方。
六年级数学圆的面积教学反思范文四
本堂课的教学目标理解圆的面积公式的推导过程,掌握圆的面积的计算方法,培养学生的动手操作本事和逻辑推理本事。在过程设计上,首先联系生活中的小事情导入,意在激起学生继续学习的兴趣,同时让学生意识到数学与生活紧密联系在一齐,教育学生仔细观察生活,热爱生活。之后复习圆各部分的名称,异常要提到圆的周长的一半的字母表达。
让学生明确,求圆的面积是在求圆的哪部分。此处联系长方形和正方形的面积的定义。学生经过回忆平行四边形、三角形的面积公式推导,重新熟悉“转化”方法。这些都是为了下头把圆转化到长方形来,从而推导出圆的面积公式做铺垫。
本堂课最重要的环节在解决两个问题:一是能够把圆转化为什么图形来解决;二是转化成长方形后,长方形的长和宽相当于圆的哪部分。解决好这两个问题,课堂教学的效果立刻能体现出来。我在教学时使用了两个工具:课件和学具。课件展示把圆分成8等分、16等分、32等分、64等分。把它们再拼在一齐,发现拼成的`图形越来越近似一个长方形。学具的使用,目的在让学生自我去探讨,从圆到长方形,什么变了,什么没有改变。而拼成的长方形的长和宽相当于圆的什么。经过多次的转化和还原实验,发现拼成的长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。最终由长方形的面积公式得到圆的面积公式。
课堂最主要的环节在于观察和操作的过程。在教学中要充分的相信学生,把课堂完全交给他们去发挥。鼓励学生去发现和探讨,发挥学生在学习中的主体地位。
在得出结论之后,我给学生安排了几个练习,练习的难度不大,目的是让学生掌握最基本的正确求出圆的面积。在计算时要强调先计算半径的平方,后再与π相乘。要求面积,必须先要算出圆的半径。
学生在学的过程中体现了很高的兴趣,从练习中发现学习的效果也很显著,这都于导入时练习生活,教学中让学生主动动手有很大关系。
当然,这堂课也存在很多的问题,在个别问题的引导上,还是不到位。比如:拼成的长方形于圆的各部分之间的关系。练习中也应当加入稍微有难度的题目会更好。
六年级数学圆的面积教学反思范文五
本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和教师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程到达最优化。
一、让学生多种感官参与学习,构成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。
如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的构成,到达了预想的`教学目的。
二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。
例如经过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件供给的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅仅概括归纳出面积计算方法,感悟到转化的思想在几何学
习中的妙用。并且学生在抽象、概括、归纳推理过程中理解严密的逻辑思维训练,构成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和本事。从而顺利的想到圆的面积计算公式也能够这样推导。
教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,经过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生经过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。
可是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备
小编准备了数学微积分论文选题-12月2日给2013毕业生这篇文章,希望会帮到2013年数学专业毕业生和各位老师们!例说微积分知识在数学解题中的应用微积分课堂教学与数学建模思想微积分课程教学中培养学生数学审美能力的探讨微积分MATLAB数学实验"微积分"教学中融入数学文化的教学设计微积分教学中渗透数学建模思想探讨《经济数学基础(微积分)》精品课程建设的实践与探索浅谈微积分与数学软件相结合的教学微积分MATLAB数学实验数学建模思想融入微积分课程教学初探微积分教学中渗入数学文化的实践与思考高中数学新课程微积分的课程设计分析2009年浙江省高等数学(微积分)文专组竞赛试题评析数学思想方法及其在微积分教学中的运用研究高中数学教科书中微积分内容的整体比较微积分中数学语言的时序性微积分方法在初等数学中的应用研究微积分方法在初等数学教学中的应用高等数学中微积分证明不等式的探讨转变教育教学观念培养学生的数学素质——浅议高职中《微积分》的教学逾越形式化极限概念的微积分课程--《普通高中数学课程标准(实验)》实证研究浅谈高等数学中微积分的经济应用英国A水平数学考试中的微积分简析高等数学教学中如何合理使用教材——从"微积分基本公式"一节的教材使用谈起大学数学教学中开展研究性学习的探索与实践——以《微积分》教学为例对高中数学微积分的理解及教学建议例谈微积分方法在初等数学教学中的应用关于中学数学中微积分教学的思考2008年浙江省高等数学(微积分)文专组竞赛试题评析将数学建模融入微积分教学的探索(责任编辑:论文题目网)
就是你准备怎么样来完成毕业论文。 写出你打算采用的方法就可以了。 如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。希望对你有帮助!!!
就是你准备怎么样来完成毕业论文。写出你打算采用的方法就可以了。如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。