勾股定理 最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 现总结勾股定理证明方法如下: 证明方法一:取四个与Rt△ABC全等的直角三角形,把它们拼成如图所示的正方形。 如图,正方形ABCD的面积 = 4个直角三角形的面积 + 正方形PQRS的面积 ∴ ( a + b )2 = 1/2 ab × 4 + c2 a2 + 2ab + b2 = 2ab + c2 故 a2 + b2 =c2 证明方法二: 图1中,甲的面积 = (大正方形面积) - ( 4个直角三角形面积)。 图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三角形面积)。 因为图1和图2的面积相等, 所以甲的面积=乙的面积+丙的面积 即:c2 = a2 + b2 证明方法三: 四个直角三角形的面积和 +小正方形的面积 =大正方形的面积, 2ab + ( a -b ) 2 = c2, 2ab + a2 - 2ab + b2 = c2 故 a2 + b2=c2 证明方法四: 梯形面积 = 三个直角三角形的面积和 1/2 × ( a + b ) × ( a + b ) = 2 × 1/2 × a × b + 1/2 × c × c (a + b )2 = 2ab + c2 a 2 + 2ab + b2 = 2ab + c2 故 a2 + b2=c2 这是常用的四种方法,下面是另外的四种方法: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,
勾股定理 勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²,即α*α+b*b=c*c推广:把指数改为n时,等号变为小于号.1.勾股定理的由来据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 2.勾股定理的验证一、【《《周髀算经》】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。如下:解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,a²+b²=c²说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c2= a2+b2=9+16=25则说明斜边为5。 第一章 勾股定理一、 勾股定理的内容,勾股定理是怎样得到的,从定理的证明过程中你得到了什么启示?练习:如图字母B所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 1、在△ABC中,∠C =Rt∠. (1) 若a =2,b =3则以c为边的正方形面积 = (2) 若a =5,c =13.则b = . (3) 若c =61,b =11.则a = . (4) 若a∶c =3∶5且c =20则 b = . (5) 若∠A =60°且AC =7cm则AB = cm,BC 2 = cm2. 2、直角三角形一条直角边与斜边分别为8cm和10cm.则斜边上的高等于 cm. 3、等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为 cm. 4、△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD = cm. 5、已知:△ABC中,∠ACB=90°,CD⊥AB于D,BC= ,DB=2cm ,则BC cm, AB= cm, AC= cm. 6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_______。 7、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米。8、已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A、25 B、14 C、7 D、7或259、小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是 A. 小丰认为指的是屏幕的长度; B. 小丰的妈妈认为指的是屏幕的宽度;C. 小丰的爸爸认为指的是屏幕的周长; D. 售货员认为指的是屏幕对角线的长度10、二、 你有几种证明一个三角形是直角三角形的方法?练习:三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.1、在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °。2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )(A) 直角三角形 (B)锐角三角形 (B) (C)钝角三角形 (D)以上答案都不对已知三角形的三边长分别是2n+1,2n +2n, 2n +2n+1(n为正整数)则最大角等于_________度.3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。阅读材料:三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:(AC)2=2△JAB=2△CAD=ADKL。同理,(BC)2=KEBL所以(AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有c/b=b/m,c/a=a/n,cm=b2cn=a2两边相加得a2+b2=c(m+n)=c2这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得即a2+2ab+b2=2ab+c2a2+b2=c2这种证法,在中学生学习几何时往往感兴趣。关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。过C引CM‖BD,交AB于L,连接BC,CE。因为AB=AE,AC=AG ∠CAE=∠BAG,所以 △ACE≌△AGBSAEML=SACFG (1)同法可证SBLMD=SBKHC (2)(1)+(2)得SABDE=SACFG+SBKHC,即 c2=a2+b2证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。SCFGH=SABED+4×SABC,所以 a2+b2=c2证法3 如图26-4(梅文鼎图)。在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设五边形ACKDE的面积=S一方面,S=正方形ABDE面积+2倍△ABC面积=c2+ab (1)另一方面,S=正方形ACGF面积+正方形DHGK面积+2倍△ABC面积=b2+a2+ab. (2)由(1),(2)得c2=a2+b2证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。设五边形EKJBD的面积为S。一方面S=SABDE+2SABC=c2+ab (1)另一方面,S=SBEFG+2•S△ABC+SGHFK=b2+ab+a2由(1),(2)得出论证都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见 【各具特色的证明方法】 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”: 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”: 勾3股4 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
我们对三角形的定义是三条首尾相连的线段围成的封闭图形。但是三角形也分很多类,按照边来分类可以分成等腰三角形等等,用角来分类可以分为直角三角形,锐角三角形和钝角三角形。而这次我们要探究的“勾股定理”就隐藏在直角三角形中。 直角三角形中有一个直角,夹着直角的那两条边我们称之为直角边,而另外的一条边我们称之为斜边。通过三角形内角和为180度我们就可以知道。直角三角形的两个锐角是互余的。也就是可以说,我们通过三角形内角和为180度,可以得出直角三角形中各个角之间的关系。那在一个直角三角形中,各个边的关系又是怎么样的呢? 勾股定理其实也就是在说直角三角形中各个边之间的关系,就现在来说勾股定理只是我们的一个猜测,因为我们还没有证明。那我们为什么会提出这样的猜测呢?我们先看下图。 我们先看看一个特例,其实当我们想要探究在一个直角三角形中两个直角边和一条斜边的关系,其实就可以直接说是,探究我如图所画的三个正方形面积的关系。首先按如图的方式将正方形ABCD和正方形DEGF沿对角线切割成个三角形,将正方形BHIE沿对角线切割成4个三角形。 因为a和b都等于3,所以三角形ABC,三角形BCD,三角形DFE和三角形EFG这是全等的。因为三角形ABC的面积等于3×3×1/2所以这两个小正方形的面积相加也就等于4个三角形相加,也就是等于18. 而再看一下大正方形BHIE,大正方形由4个小三角形组成,每一个三角形的面积也是3×3再×1/2 所以大正方形的面积也等于18。这时我们就发现了两个小正方形相加等于这个大正方形。也就可以说是a方加b方等于c方了。这时,我们就对直角三角形的边的关系有了一个猜想,那就是两个直角边的平方和,等于斜边的平方。那这是否可以作为我们对勾股定理猜想的一个证明呢?其实是不能的,虽然我们也是用严谨的逻辑将它推理出来的,但是我们是用一个特例来进行证明的,而我们的定理则需要一定的普遍性。 那么,接下来我们将尝试证明一下勾股定理。 如图我们可知一个三角形的面积为1/2ab,大正方形的面积为a+b的平方。接下来我们就可以证明了,证明过程如下。 美国总统加菲尔德,也利用下面的方法证明出了勾股定理,但是我认为这样的证明方法不具有普遍性,因为他是通过等腰直角三角形来证明是勾股定理的,而不是所有的直角三角形都是三角形。 其实我们还是可以用等面积的方法来证明出勾股定理。证明过程如下 现在我们已经知道了,当一个三角形为直角三角形的时候,它的两个直角边的平方和等于它斜边的平方。那假如我们知道在一个三角形中它的两条边的平方和等于另外一条边的平方,那么我们能不能知道这个三角形是一个直角三角形呢?我们如何证明呢?证明过程如下。 这样我们就可以证明出如果三角形的三边长a、b、c满足 a方加 b方等于c方时,那么这个三角形就是一个直角三角形,我们称其为勾股定理之逆定理。 接着我们就可以通过勾股定理来解决很多实际的问题,我相信会有更多勾股定理的证明方法,我也有兴趣在之后继续去探究。在勾股定理这一章节中,让我感受到了其中的乐趣,并且我也有很大的成就感。这一章节也让我对八上的其他章节有了很大的兴趣。
勾股定理是数学史上一个伟大的定理,同时也是一个历史悠久的定理.下面我给你分享数学勾股定理论文,欢迎阅读。
数学思想是数学知识的精髓,又是把知识转化为能力的桥梁.灵活运用数学思想,能够有效地提高分析问题和解决问题的能力,增强应用数学知识的意识.在《勾股定理》这一章中,蕴含着许多重要的数学思想,现举例介绍如下.
一、方程思想
在含有直角三角形的图形中,求线段的长往往要使用勾股定理,如果无法直接用勾股定理来计算,则需要列方程解决.
二、化归思想
化归思想就是通过一定的方法或途径,把需要解决的问题变换形式,变化成另一类已经解决或易于解决的问题,从而使原来的问题得到解决.
例3如图3,长方体的长为15cm,宽为10cm,高为20cm.点B与点C的距离为5cm,一只蜗牛如果要沿着长方体的表面从点A爬到点B,需爬行的最短路程是多少?
分析:由于蜗牛是沿着长方体的表面爬行的,故需把长方体展开成平面图形.根据两点之间线段最短,蜗牛爬行的较短路程有两种可能,如图4、图5所示.利用勾股定理容易求出两种图中AB的长度,比较后即可求得蜗牛爬行的最短路程是25cm.
说明:这里通过长方体的展开图,把立体图形转化为平面图形,把求蜗牛爬行的最短路程问题化归成利用勾股定理求两点间的距离问题.
例4如图6,是一块四边形的草地ABCD,其中∠A = 60O,∠B =∠D = 90O,AB = 20m,CD = 10m,求AD、BC的长(精确到,≈).
(2004年天津市中考题)
分析:图中无直角三角形,怎么办?联想到含30O角的直角三角形,因而延长AD、BC交于点E,则∠E = 30O,AE = 2AB = 40m,CE = 2CD = 20m. 由勾股定理得DE == m,BE == m,所以AD = 40≈,BC = 20≈.
说明:本题充分利用已知图形的特点,通过构造新图形,将四边形问题巧妙地转化成了直角三角形问题.
三、数形结合思想
数形结合,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的.
例5在一棵树的10m高处有两只猴子,其中一只爬下树直奔离树20m的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?(2005年福建省龙岩市中考题)
分析:依题意画出示意图7,D为树顶,AB = 10m,C为池塘,AC = 20m. 设BD = (m),则树高AD = ( +10)m.因为AC + AB = BD + DC,所以DC = (30)m. 在Rt△ACD中,由勾股定理可得方程202 + ( + 10)2 = (30)2,解得 = 5,所以 +10 = 15,即树高15m.
说明:勾股定理本身就是数形结合的一个典范,它把直角三角形有一个直角的“形”的特点,转化为三边“数”的关系.利用勾股定理解决实际问题,关键是利用数形结合思想将实际问题转换成直角三角形模型,再利用方程来解决.
四、分类讨论思想
在解题过程中,当条件或结论不确定或不惟一时,往往会产生几种可能的情况,这就需要依据一定的标准对问题进行分类,再针对各种不同的情况分别予以解决.最后综合各类结果得到整个问题的结论.分类讨论实质上是一种“化整为零,各个击破,再积零为整”的数学方法.
例6 一直角三角形的两边长分别为3cm、4cm,则第三边的长为______.
分析:此题中已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论,答案是5cm或cm.
例7“曙光中学”有一块三角形形状的花圃ABC,现可直接测量到∠A = 30O,AC = 40米,BC = 25米,请你求出这块花圃的面积. (2003年黑龙江省中考题)
分析:由于题目中没有明确告诉我们△ABC的形状,故需分两种情况讨论.
在图8中,S△ABC=10 (20 + 15)米2;
在图9中,S△ABC= 10(2015)米2.
说明:此类问题由于题目中没有图形,常需分类讨论,解答时极易因考虑不周而导致漏解,希望同学们用心体会.
五、整体思想
对于某些数学问题,如果拘泥常规,从局部着手,则难以求解;如果把问题的某个部分或几个部分看成一个整体进行思考,就能开阔思路,较快解答题目.
例8已知一个直角三角形的周长为30cm, 斜边长为13cm,那么这个三角形的面积为______.
分析:设这个直角三角形的两条直角边长为 ,斜边为 ,则 = 3013 = 17,于是( + )2 = 2 + 2 + 2 = 172 = 289,由勾股定理知2 + 2 = 289,即132+ 2 = 289,所以 = 60,故所求三角形面积S == 30cm2.
说明:我们要求的是面积,即,不一定要分别求出和的值,只要从整体上求出即可.
例9 如图10所示,在直线上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1 + S2 + S3 + S4 = ______.(2005年浙江省温州市中考题)
分析:根据已知条件可知AC = EC,∠ABC = ∠CDE = 90O,由角的互余关系易证∠ACB =∠CED,这样可得 △ABC ≌ △CDE,所以BC = ED,在Rt△ABC中,由勾股定理,得AC2 = AB2 + BC2 = AB2 + DE2.由S1 = AB2,S2 = DE2,AC2 = 1,有S1 + S2 = 1,同理可得S3 + S4 = 3,所以S1+ S2 + S3 + S4 = 1+3 = 4.
说明:本题不是直接求出S1,S2,S3,S4,而是借助勾股定理求得S1 + S2,S3 +S4,体现了整体思想在解决问题中的灵活应用.
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.
一、分类思想
例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )
点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.
二、方程思想
例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()
分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.
解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.
在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.
解得x=17m,即旗杆的高度为17m,答案选D.
三、整体思想
例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.
分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.
解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.
五、数形结合思想
例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.
分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.
解:由C(10,0)可知OD=5.
(1)以点O为圆心,OD为半径作圆交边
六、构造思想例6.同例3
分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.
正确的数学思想是成功解题的关键所在.在运用勾股定理解题时,若能正确把握数学思想,则可使思路开阔,方法简便快捷.下面列举在应用勾股定理时经常用到的数学思想,供同学们参考.
一、 方程思想
◆例1如图1,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且点C落到E点,则CD等于( ).
分析:由题意可知,ΔACD 和ΔAED关于直线AD对称,因而有ΔACD ≌ΔAED .进一步则有AE=AC=6cm,CD=ED,DE⊥AB.设CD=ED=xcm,则在ΔDEB中,由勾股定理可得DE2+BE2=BD2.又因在ΔABC中,AB2=AC2+BC2=62+82=100,得AB=10.所以有x2+(10- 6) 2=(8- x)2,解得x=3.故选B.
二、转化思想
◆例2如图2,长方体的高为3cm,底面是正方形,边长为2cm.现有一小虫从A出发,沿长方体表面爬行,到达C处,问小虫走的路程最短为多少厘米?
分析:求几何体表面最短距离问题,通常可将几何体表面展开,把立体图形转化为平面图形.对于此题,可将该长方体的右表面翻折至前表面,使A、C两点共面,连结AC,线段AC的长度即为最短路程(如图3).由勾股定理可知AC2=32+42=52,即小虫所走的最短路程为5cm.
三、分类讨论思想
◆例3在ΔABC中,AB=15,AC=20,BC边上的高AD=12,试求BC的长.
分析:三角形中某边上的高既可在三角形内部,也可在三角形的外部,故此题应分两种情况来考虑.当BC边上的高AD在ΔABC的内部时,如图4,由勾股定理得BD2=AB2-AD2,得BD=9;CD2=AC2-AD2, 得CD=16,则BC=BD+CD=9+16=25;当BC上的高AD在ΔABC的外部时,如图5,同样由勾股定理可求得CD=16,BD=9,这时,BC=CD-BD=16- 9=7,故BC的长为25或7.
四、数形结合思想
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径 隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: •东汉末至三国时代吴国人 •为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。
勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径 隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: •东汉末至三国时代吴国人 •为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。
110 浏览 5 回答
214 浏览 6 回答
258 浏览 6 回答
133 浏览 6 回答
271 浏览 5 回答
239 浏览 5 回答
173 浏览 6 回答
159 浏览 7 回答
322 浏览 2 回答
147 浏览 3 回答
104 浏览 5 回答
283 浏览 7 回答
268 浏览 7 回答
139 浏览 5 回答
272 浏览 5 回答