戴永年教授 、中国工程院院士、博士研究生导师,现任昆明理工大学真空冶金研究所所长。享受国务院政府特殊津贴,荣获“全国五一劳动奖章”、全国“高校先进科技工作者”、“云南省劳动模范”、“云南省有突出贡献优秀科技人才”等荣誉称号。研究方向:有色金属真空冶金及材料、电池及电池材料。先后培养了博士、硕士研究生50余名以及大量的本科生,承担并完成了数十个研究项目,发表科研学术论文100余篇,其中被SCI、EI、ISTP等收录30多篇。出版学术专著7部,其中《有色金属材料的真空冶金》被列为国家科学技术著作出版基金项目,《真空冶金》获全国优秀科技图书二等奖。获发明专利和实用新型专利共计11项。研究成功的“内热式多级连续蒸馏真空炉”和“卧式真空炉” 等相关技术已在国内40多个单位及巴西、玻利维亚和越南三个国家推广应用。获得国家和省部级的各种奖励共计28项,其中,国家技术发明二等奖一项、国家科技进步二等奖一项、国家发明四等奖一项、云南省科学技术突出贡献奖(奖金300万元)一项、省部级科技进步一等和二等奖四项、中国真空学会 “94'科技成就奖(HAYASHI AWARD)”一项。 博士、 教授 、博士研究生导师,现任昆明理工大学副校长。先后获教育部高校青年教师奖、霍英东教育基金会第七届高等院校青年教师奖,云南省自然科学一等奖,云南省自然科学二等奖,云南省高等教育教学成果一等奖,原中国有色金属公司科技进步三等奖;云南省高校科研成果二等奖, 第十三届全国发明展览会金奖、银奖,云南省优秀发明创造选拔赛二等奖,中国青年科技成果大奖赛金奖,中国青年科技博览会金奖,云南省科技发明比赛一等奖,云南省首届青年科技成果大奖赛二等奖,全国及云南省大学生科技“挑战杯”获奖指导教师,获昆明市青年十杰称号,云南省高等院校优秀党务工作者等称号。研究方向:微波加热在材料冶金中的应用、冶金新技术、资源综合利用。担任博士、硕士、本科生的《微波冶金》、《微波加热在材料制备中的应用》等5门课程。指导博士生和硕士生 20余名,本科毕业生论文20余人次。先后主持和参加了国家自然科学基金、国家教育部科学基金、云南省自然科学基金重点项目、攻关项目、昆明市科技重点项目、四川省攀枝花市科技项目、中-德、中-英国际合作项目等29个项目。作为项目负责人承担并完成的项目被评为其研究成果在国内外尚属首创,处于国际领先水平。出版专著2部,共发表论文160余篇,其中第一作者91篇,刊于国内核心刊物62篇,国际核心期刊8篇,国际会议31篇,其中被SCI、EI、ISTP、CA等收录10余篇。申请中国专利10项,其中4项已获授权。华一新博士、教授、博士研究生导师,现任冶金工程系主任。享受国务院政府特殊津贴,1991年被国家教委和国务院学位委员会评为“做出突出贡献的中国博士学位获得者”, 1995年被评为原中国有色金属工业总公司跨世纪人才,1997年被评为云南省中青年学术和技术带头人, 2004年被评为云南省优秀教师。研究方向:冶金新技术与新工艺、冶金物理化学、微波冶金、离子液体应用。讲授过《普通冶金学》,《冶金新技术》,《冶金动力学》,《现代冶金分析技术》,《微波化学》,《火法冶金过程物理化学》等9门课程,主持《有色重金属冶金学》精品课程建设。目前指导硕士、博士研究生10余人。近年来,主持和参与完成国家重点科技攻关、国家自然科学基金、国家教委优秀年轻教师基金等国家和省部级项目的18项。获国家发明专利2项,省部级等各种科研奖励5项。已在国内外学术刊物上发表论文50余篇,其中被SCI、EI等收录30余篇次。出版《冶金过程动力学导论》(冶金工业出版社,2004年)和《微波化学》(科学出版社,1999年)2部学术专著。王华博士、教授、博士研究生导师,现任研究生院常务副院长,1996年5月被原有色金属总公司授予“先进青年工作者”称号,97年5月被授予“昆明市十大杰出青年”称号,1998年12月获“云南省有突出贡献的中青年专家” 称号,2000年12月获昆明理工大学首届香港伍达观基金杰出教师奖,2005年6月被授予“云南省十大杰出青年”称号,2003年1月当选为第13届昆明市五华区人大代表。研究方向:冶金能源与环保、强化冶炼与节能、钢铁冶金新技术、冶金过程仿真与控制。为博士、硕士研究生及本科生讲授主干课程7门,已培养硕士、博士生10余人,博士后研究人员1人。先后主持国家自然科学基金项目、云南省“十五”科技攻关项目、云南省自然科学基金重点项目、教育部优秀回国人员科研基金项目等课题10余项,发表学术论文50余篇、其中被SCI、EI收录10余篇,出版学术专著5部,申请国家专利19项。科研成果应用于生产实践,每年能获得1000余万元的经济效益。先后获省部级科技进步2等奖1项、3等奖5项,省自然科学2等奖1项、3等奖1项。谢刚 博士、教授、博士研究生导师,为国家首批新世纪“百千万人才工程”人才,云南省学术和技术学科带头人、云南省有突出贡献的专业技术人员,云南省青联常委,当选为1996年昆明市十大杰出青年。研究方向:计算冶金、冶金物理化学。主讲博士生、硕士生及本科生课程6门,指导毕业博士及硕士生20多人,指导在读博士及硕士生10多人。承担完成多项国家自然科学基金和云南省自然科学基金,在国内外学术刊物上发表学术论文90多篇,其中SC、IEI收录20多篇,获云南省自然科学三等奖三项。多次主办和参与国际和国内学术会议。 博士、教授、博士研究生导师,现任材料冶金工程学院副院长。获2003年国家技术发明奖二等奖一项; 1999年广东省科技进步奖一等奖一项; 1998年原中国有色金属工业总公司科技进步二等奖一项; 1994年原中国有色金属总公司科技进步二等奖一项;2004年获云南省优秀教师称号;2004获云南省有突出贡献的专业技术人员称号。研究方向:有色金属冶金、真空冶金。发表科研学术论文30余篇,出版学术专著2部,申请国家专利11项,其中发明专利8项,实用新型3项,已授权10项,研制成功的真空冶金新工艺和新设备,在国内推广应用,累积创利税上亿元,并培养了硕士研究生10余名。陶东平博士、教授、博士研究生导师。研究方向:熔体(溶液)相平衡的分子热力学、液态合金理论及应用、硅酸盐熔体(熔渣)热力学》。讲授本科生的必修课《冶金原理》、研究生的学位课《冶金热力学》和必修课《材料热力学》以及选修课《熔体相平衡的分子热力学》、《统计热力学》和《冶金熔体物理化学》、《熔体相平衡的分子热力学》、《统计热力学》和《冶金熔体物理化学》。已发表学术论文36篇,其中有16篇为SCI收录、4篇为EI收录。在Metall. Mater. Trans. A和B上已发表6篇论文,提出了分子相互作用体积模型-MIVM。承担过云南省应用基础研究基金项目2项,国家自然科学基金项目2项。出版专著1本。省部级科研奖1项(均排名第一)。郭忠诚博士、教授、博士研究生导师。原中国有色金属工业总公司和云南省中青年学术与技术带头人,云南省政府特殊津贴获得者,昆明市优秀专家,昆明理工大学首届特聘教授。荣获教育部全国百篇优秀博士学位论文奖,云南省高校首届青年“科技创新十大杰出标兵”和全国电镀行业首届“十大优秀青年”等荣誉称号。研究方向:材料表面改性及其物理化学过程、新型多功能材料制备技术及其微观结构表征、超细粉体金属粉体材料、表面工程。讲授过3门研究生课程,培养了硕士生7人,博士生2人, 自90年代以来一直开展新材料及其表面改性与精饰的研究工作,先后主持完成国家863计划、国家发展与改革委员会高技术产业化、国家中小企业创新基金、云南省科技攻关计划等项目20多项。发表学术论文150多篇,其中被《SCI》、《EI》等国际权威检索机构收录40多篇,被国内外刊物引用200多篇次,出版专著2部。申报国家发明专利8项。获省部级科技进步奖4项。魏昶 博士、教授、博士研究生导师。研究方向:有色金属冶金新技术和新材料制备、有色金属冶金新技术及其理论研究、复杂矿物资源和再生资源分离新技术。近几年发表学术论文20余篇,多篇被EI和全国核心期刊收录。编著并出版了《湿法炼锌理论与应用》、《铅锌锡及综合利用》等专著,参加编著并出版了《锌冶金学》等著作。先后主持并完成国家自然科学基金项目“用硫化碱法提锡的基础理论和新工艺”;国家“八五”攻关子项目“镍电解混合阳极液除铁研究”;云南省应用基金项目“高钙镁难选低品位氧化铜矿新工艺”;省自然科学基金项目“脆硫铅锑矿湿法分离新工艺和基础理论”等项目。目前已培养6届硕士研究生16人和1届博士生。王亚明博士、教授、博士研究生导师,现任生化学院院长。中国林学会林产化学化工分会理事,全国松香、松节油专业委员会委员。云南省中青年学术和技术带头人,云南省造纸学会副理事长,云南省十五重点学科应用化学学科带头人,昆明理工大学重点学科化学工程学科带头人。研究方向:新型催化材料。先后主持完成了国家级、省部级项目十余项,主要从事纳米粒子催化剂固体超强酸的制备、物性表征以及在天然产物(松香、松节油等)的深加工制精细化学品的催化性能研究及相关技术开发。出版专著两部,《催化原理及新催化技术》获97-98年度西南、西北地区科技图书贰等奖,《松节油择形催化》获2002年西南地区科技图书壹等奖。发表论文50余篇,EI收录10篇。松脂深加工新型催化剂、新工艺研究》获2002年度云南省科技成果奖(自然科学)贰等奖(排名第一)。获发明专利授权二项(排名第一)。 博士、教授、博士研究生导师,现任材料与冶金工程学院副院长。云南省中青年学术技术带头人后备人才,2006年获教育部“霍英东基金”青年教师奖(教学类三等),2007年获教育部“新世纪优秀人才”。现兼任日本东京大学可持续材料国际研究中心合作教授、国家自然科学基金通讯评议专家、中国有色金属学会青年工作委员会副主任委员、云南省青联委员等。研究方向:真空冶金物理化学及多晶硅材料。现主持和参与国家自然科学基金、国家科技支撑计划、国家973预研计划、教育部博士点基金、国际合作项目等10余项,获云南省自然科学二等奖3项、三等奖1项,申请国家专利7项,参编学术专著1部,发表学术论文40余篇,其中被SCI、EI等收录30余篇次。
冶金工程领域是研究从矿石等资源中提取金属或化合物,并制成具有良好的使用性能和经济价值的材料的工程技术领域。 包括:钢铁冶金、有色金属冶金两大类。 一般课程设置:(我拿一专业冶金院校给你个举个例子哈) 基础课:科学社会主义理论、外语、计算方法,计算机技术应用基础等。 技术基础:冶金原理、冶金传输原理与反应工程、物理化学、材料科学与工程导论、企业管理或工程经济等。 专业课:物理化学、金属学、冶金传输原理、冶金原理、钢铁冶金学、有色金属冶金学 、金工实习、生产实习、认识实习、冶金传输原理、冶金物理化学、冶炼工业、矿相岩相结构分析、课程设计、毕业设计等,以及各校的主要特色课程和实践环节 不过我感觉你说的职业技术学院的学的理论应该不会很深哦.如果你有一定的物理,化学基础(不需要很好),学起来会更轻松.虽然你是学文科的,但上了大学如果肯努力,学好也不是很难. 我之所以这么说是因为我有一朋友他是学文科的,但大学他读的是土木工程.本来是读的三年的专科,现在他已经在读一所本科院校的建筑学了,而且成绩还可以. 大家可以先设想一下,如果我们的生活离开了金属制品,这个社会还可以正常运转下去吗?当然这样的恐怖状态只会存在于我们的想像之中,如果真是出现这样的不幸,整个人类社会恐怕要返回蒙昧状态了吧!从远古时代以来,在铜金属被提炼出来之后,人类的生产生活与金属及其制品的关系就变得日益密切。在现代社会,人们的衣食住行更是离不开金属材料,生产活动的工具与设施也都要使用金属材料。可以说,没有金属材料便没有人类今天的物质文明。冶金工程就是从矿石中提取金属和金属化合物,然后用各种方法制成具有一定性能的金属材料。 本专业的价值正体现在她的基础地位。冶金工程为经济提供强有力的生产资料保障,涉及的是商业性的应用,因此是一门实践性很强的学科,她会不断吸取自然科学,特别是物理学、化学、力学等方面的新成就,指导冶金生产技术向广度和深度发展;在另一方面,冶金工程又以丰富的实践经验,反过来充实了上述学科的内容。 冶金行业作为国民经济重要生产部门,使得冶金工程专业具有良好的发展前景。举一个比较有代表性的例子。我国是一个产钢大国,每年的钢铁总产量位于世界前列。钢产量的指标,当然可以作为衡量一个国家经济发展水平的重要参数,但产量高并不意味着我们就是钢铁冶炼的强国。因为,每年我们还要进口不少特种钢材。在特种钢材冶炼技术上同先进国家的差距,表明我们冶金工程的发展水平并不高。要改变这种状况,促进国家从产钢大国变为钢铁强国,就要加大冶金技术人才的培养。所以,冶金工程具备很大的发展潜力。考生可以把握住这个机会,为国家的冶金技术贡献力量,实现自己的人生价值。 本专业主要培养具备冶金物理化学、钢铁冶金和有色金属冶金等方面知识,能在冶金领域从事生产、设计、科研和管理工作的高级工程技术人才。有关黑色和有色金属冶金过程的基本生产工艺知识,冶金生产组织、技术经济、科学管理、环境安全的基本知识和工业设计的初步能力,是本专业的学生要求掌握的能力。同时学生要具备制图、机械、电工与电子技术和计算机应用的基本知识和技能,具有分析解决本专业生产中的实际问题及进行科学研究,开发新技术、新工艺、新材料的专业技能。本专业毕业生的就业范围比较狭窄,但狭窄并不意味着工作没有前途,在有色金属冶炼厂、制取金属化合物的化工厂或试剂厂从事生产一线的工作,可以体会到劳动创造价值的喜悦;在有色冶金研究设计院(所)、环境保护研究单位、学校,从事生产组织、科研、设计、专业课教学等工作,也可以获得在知识的海洋里寻求真理的快乐。毕业生经短期外语培训后,还可到外贸部门、有关企业从事钢铁对外贸易工作。
先写你对这个专业的理解,在写前景展望,还有你的学习计划,一家之言
冶金工程是研究从矿石等资源中提取金属及其化合物、并制成具有良好加工和使用性能材料的工程技术领域。其工程硕士学位授权单位培养从事冶金技术及其理论、冶炼过程及控制、冶炼工艺及装备设计、生产技术改进、冶炼成品性能改进和检测及冶金企业管理的高级工程技术人才。一、领域介绍冶金工程领域是研究从矿石等资源中提取 冶金企业金属或化合物,并制成具有良好的使用性能和经济价值的材料的工程技术领域。冶金是国民经济建设的基础,是国家实力和工业发展水平的标志,它为机械、能源、化工、交通、建筑、航空航天工业、国防军工等各行各业提供所需的材料产品。现代工业、农业、国防及科技的发展对冶金工业不断提出新的要求并推动着冶金学科和工程技术的发展,反过来,冶金工程的发展又不断为人类文明进步提供新的物质基础。冶金工程技术的发展趋势是不断汲取相关学科和工程技术的新成就进行充实、更新和深化,在冶金热力学、金属、熔锍、熔渣、熔盐结构及物性等方面的研究会更加深入,建立智能化热力学、动力学数据库,加强冶金动力学和冶金反应工程学的研究,应用计算机逐步实现对冶金全流程进行系统最优设计和自动控制。冶金生产技术将实现生产柔性化、高速化和连续化,达到资源、能源的充分利用及生态环境的最佳保护。随着冶金新技术、新设备、新工艺的出现,冶金产品将在超纯净和超高性能等方面发展,在支撑经济、国防及高科技发展上发挥愈来愈重要的作用。冶金工程与许多学科密切相关,相互促进发展。冶金工程包括:钢铁冶金、有色金属冶金两大类。冶金物理化学是冶金工程的应用理论基础。该工程领域与材料工程、环境工程、矿业工程、控制工程、计算机技术等工程领域及物理、化学、工程热物理等基础学科密切联系,相互促进,共同发展。二、培养目标培养冶金工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与冶金企业管理等方面的高层次人才。冶金工程领域工程硕士生应有扎实的现代冶金技术的基础理论和系统的专业 地理知识,对冶金工程技术的国内外现状和发展趋势有较全面的了解。能熟练运用先进的科学技术和实验方法,具有从事工程技术研究、改造、开发与应用(包括工程设计与工程管理)的能力。三、领域范围冶金工程的领域范围,可分为两大类:钢铁冶金和有色冶金。从研究方向和技术性质可细分为:(1)冶金过程和材料合成的物理化学理论及应用。(2)矿物的资源综合利用及冶炼过程中的环境保护。(3)钢铁冶炼工艺、技术、装备及生产系统的设计、施工等。(4)凝固加工技术。(5)冶金过程模拟仿真。(6)纯洁钢制造技术。(7)钢铁制造流程的解析和综合集成。(8)有色冶金过程电化学冶金原理、工艺、技术的应用、固态离子学及其相关理论 冶金工程在冶金和材料中的应用。(9)有色冶过程中湿法冶金和粉体工程。(10)有色金属功能材料的开发与应用等。四、课程设置基础课:科学社会主义理论、自然辩证法、外语、计算方法或数理统计或数理方程或模糊数学及其应用、计算机技术应用基础等。技术基础:冶金物理化学、冶金传输原理与反应工程、近代物理化学研究方法、材料科学与工程导论、企业管理或工程经济等。专业课:钢铁冶金、有色冶金新技术、冶金过程数学模拟及仿真、冶金资源综合利用及环境保护、现代冶金和材料的测试技术、塑性加工物理冶金理论、凝固原理与连铸工艺、冶金质量控制、泡沫冶金熔体、耐火材料结构与性能、轧制工艺与设备、湿法冶金物理化学、有色冶金原理与方法、有色金属材料与加工等。上述课程,可定为学位课程和非学位课程。亦可由培养单位与合作企业根据实际需要确定其他课程,课程的总分不得低于28学分。五、学位论文结合冶金企业的实际课题进行研究工作,可以是冶炼新技术、新工艺、新设备、的研究和开发,可以是原冶金工艺和设备系统的技术革新,可以是冶金过程检测技术和质量控制,可以是冶金 冶金工程工艺设备的状态监测和故障诊断系统的研究,可以是大型冶金企业管理模式革新等。根据研究结果撰写论文:对于新产品设计与开发技术的结果,论文应该具有设计方案的比较、评估,设计计算书,完整的图纸;对于重大技术改造和革新的成果,应该具有对原设备与技术的评价,改造和革新方案的评述和结果的技术和经济效果分析;对于产品质量控制和试验的成果,必须有试验方案、完整的实验数据、数据处理分析方法、结果分析;对于生产设备管理成果,必须给出新的管理理论体系,对企业产量和质量作效果分析,并给出创新管理信息系统等。编辑本段国内专业排名1.北京科技大学2.中南大学3.东北大学4.昆明理工大学5.上海大学6.重庆大学7.武汉科技大学8.北京理工大学9.内蒙古科技大学10.四川大学编辑本段历史地位说起冶金工程,在中国可以追溯到商周时期的青铜器时代。那时,丰富的冶铜技术就成为了中国冶金行业的源头,并迅速把整个青铜技术推到更高的阶段,建立了世界上最为光辉灿烂的“青铜文明”。之后,中国的冶金技术在世界上又率先取得了突破:人们在漫长的冶炼过程中逐渐掌握了金属冶炼所需要的高温技术和较高水平的冶金处理技术。如柔化处理技术、炒钢技术、百炼钢技术、灌钢技术等。公元十五世纪,在明代中叶中国已大量开始生产金属锌。宋应星的《天工开物·五金》中有关于密封加热冶炼“倭铅”(即锌)方法的记载。明代的钱币“永乐通宝”也具有较高的含锌量。而欧洲到了十八世纪才开始冶炼锌。此外,宋应星的《天工开物》记载了中国古代冶金技术的许多成就,如冶炼生铁和熟铁的连续生产工艺,退火、正火、淬火等钢铁热处理工艺等。新中国成立以来,国家一直非常重视冶金工业的发展。中国的钢产量连续居于世界前列,足见国家的重视和其迅速稳健发展的良好势头。诚然,现代科技的进步催生了一些高科技新材料的诞生和应用。但是,冶金材料在未来相当长的一段时期内,其优势和特性依然是其他材料所不可比拟和替代的。编辑本段专业特色专业领域冶金工程专业是一门研究从矿石提取钢铁或有色金属材料并进行加工的应用性学科,培养的是冶金工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与冶金企业管理等方面的高层次专门人才。高新技术和学科发展相结合是本专业的一大特点。主要体现在以下两个方面:一 英语课程是通过冶金过程的优化和新技术开发最大限度地满足相关产业对高品质冶金材料的要求,二是最大限度地减少冶金生产的资源和能源消耗,减少对环境的污染。这也是本专业的前沿主攻方向。考虑到中国冶金行业清洁化生产水平低和特有的复合矿资源多样化的特点等因素,该专业不仅要致力于研究流程中废弃物的“四化”(即减量化、再资源化、再能源化和无害化)处理综合技术,而且还要对复合矿冶炼技术进行环保和经济意义上的评价和指导,并在此原则下开发复合矿的综合利用技术,最终实现中国高品质冶金材料的生态化生产。研究领域根据以上特点,冶金工程专业主要有三大研究方向。一是冶金物理化学方向:学习内容包括冶金新理论与新方法、冶金与材料物理化学、材料制备物理化学、冶金和能源电化学等。二是冶金工程方向:学习内容包括钢铁和有色金属冶金新工艺、新技术和新装备的研究、现代冶金基础理论和冶金工程软科学、冶金资源的综合利用、优质高附加值冶金产品的制造和特殊材料的制备技术等。三是能源与环境工程方向:学习内容包括冶金工程环境控制、燃料的清洁燃烧与能源极限利用、工艺节能与余能回收、工业固体废弃物、城市垃圾处理、大气污染控制、技术及新产品的开发与试验工作等。这些广泛的分支领域构成了冶金工程的重要组成部分,极大地推进了冶金材料行业的发展与国家的工业建设。与此同时,冶金工程技术也在不断汲取相关学科和工程技术的新成就进行充实、更新和深化,在冶金热力学、金属、熔锍、熔渣、熔盐结构等方面的研究会更加深入。随着冶金新技术、新设备、新工艺的出现,冶金产品将在超纯净和超高性能等方面发展。编辑本段就业前景中国仅有20多所高校开设有此专业,每年培养的专业人才非常有限,而市场需求量又特别大。有关统计数据显示,市场对冶金工程专业人才的需求是实际该专业毕业生人数的10倍。如此大的市场需求也为该专业的学子提供了广阔的就业前景。由于冶金工程专业培养的学生基础宽厚、理论扎实、技能全面,同时,又具备冶金和金属材料加工等方面的知识和技能。加之,冶金行业属于国民经济的基础和支柱产业之一,因而,毕业生择业面宽,适应能力强。毕业生可以到冶金、化工、材料、环境保护及其相关行业的生产、科研和管理部门从事生产技术管理、工程设计、技术开发、新型结构材料和功能材料的研制和开发等工作,也可以到高等院校和高等职业学校从事专业教学工作。“感觉现在钢铁、冶金类专业的大学生太吃香了。”在东北大学2005举办的一次毕业生双选会上,一位钢铁冶金类专业毕业生述说了该专业毕业生的就业好机遇。的确,祖国蓬勃的建设事业需要冶金工程方面大量的专业人才,众多的钢铁冶金,有色金属冶金企业等都是学子们一展身手的好地方。随着现代科技的迅猛发展,该专业对从业人员的综合素质也提出了较高的要求,如计算机技术在冶金工程领域的广泛应用,也就使得学生在大学里就要逐步接触并掌握到丰富而实用的计算机知识。另外,该领域在国内的发展与国外先进技术的交流也日益频繁,对学生外语的使用也提出了相当高的要求。
你好,化 学 发 展 史 ( 化工学院 x x x) 摘要:从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 关键词:燃素化学;量子论;晶体化学 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢? 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 一、化学的来由 化学的英文词为Chemistry,法文Chimie,德文Chemie,它们都是从一个古字、即拉丁字chemia,希腊字Xηwa(Chamia),希伯莱字Chaman或Haman,阿拉伯字Chema或Kema,埃及字Chemi演化而来的.它的最早来源难以查考.从现存资料看,最早是在埃及第四世纪的记载里出现的.所以有人认为可以假定是从埃及古字Chemi来的,不过这个名字的意义很晦涩,有埃及、埃及的艺术、宗教的迷惑、隐藏、秘密或黑暗等意义。其所以有这些意义,大概因为埃及在西方是化学记载诞生的地方,也是古代化学极为发达的地方,尤其是在实用化学方面。例如,埃及在十一朝代进已有一种雕刻表示一些工人下在制造玻璃,可见至少在公元前2500年以前,埃及已知道玻璃的制造方法了。再从埃及出土的木乃伊看,可知在公元前一、二千年时已精于使用防腐剂和布帛染色等技术。所以古人用埃及或埃及的艺术来命名“化学”。至于其它几种意义,可能因为古人认为化学是一种神奇和秘密的事业以及带有宗教色彩的缘故。 中国的化学史当然也是毫不逊色的。大约5000-11000年前,我们已会制作陶器,3000多年前的商朝已有高度精美的青铜器,造纸、磁器、火药更是化学史上的伟大发明。在十六、十七世纪时,中国算得上是世界最先进的国家。“化学”二字我国在1856年开始使用。最早出现在英国传教士韦廉臣在1856年出版的《格物探原》一书中。 二、化学的几个发展阶段 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。。 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。 科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。 这里主要讲述近二百多年来的化学史故事。这是化学得到快速发展的时期,是风云变幻英雄辈出的期。让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。 三、化学学科在探索中成长 化学的发展可以说是日新月异,尤其是它的边缘学科或者说是它的分支学科,譬如生物化学、物理化学、晶体化学等等,令人目不暇接。就眼下炒得过热的基因工程、克隆技术以及共轭电场论等,更是令人眼花缭乱。而古往今来,有多少化学家为化学的发展做出了难以估量的贡献。你想了解他们吗?化学名人风采将带您走近他们。 燃素说的影响 。可燃物如炭和硫磺,燃烧以后只剩下很少的一点灰烬;致密的金属煅烧后得到的锻灰较多,但很疏松。这一切给人的印象是,随着火焰的升腾,什么东西被带走了。当冶金工业得到长足发展后,人们希望总结燃烧现象本质的愿望更加强烈了。 1723年,德国哈雷大学的医学与药理学教授施塔尔出版了教科书《化学基础》。他继承并发展了他的老师贝歇尔有关燃烧现象的解释,形成了贯穿整个化学的完整、系统的理论。《化学基础》是燃素说的代表作。 施塔尔认为燃素存在于一切可燃物中,在燃烧过程中释放出来,同时发光发热。燃烧是分解过程: 可燃物==灰烬+燃素 金属==锻灰+燃素 如果将金属锻灰和木炭混合加热,锻灰就吸收木炭中的燃素,重新变为金属,同时木炭失去燃素变为灰烬。木炭、油脂、蜡都是富含燃素的物质,燃烧起来非常猛烈,而且燃烧后只剩下很少的灰烬;石头、草木灰、黄金不能燃烧,是因为它们不含燃素。酒精是燃素与水的结合物,酒精燃烧时失去燃素,便只剩下了水。 空气是带走燃素的必需媒介物。燃素和空气结合,充塞于天地之间。植物从空气中吸收燃素,动物又从植物中获得燃素。所以动植物易燃。 富含燃素的硫磺和白磷燃烧时,燃素逸去,变成了硫酸和磷酸。硫酸与富含燃素的松节油共煮,磷酸(当时指P2O5)与木炭密闭加热,便会重新夺得燃素生成硫磺和白磷。而金属和酸反应时,金属失去燃素生成氢气,氢气极富燃素。铁、锌等金属溶于胆矾(CuSO4·5H2O)溶液置换出铜,是燃素转移到铜中的结果。 燃素说尽管错误,但它把大量的化学事实统一在一个概念之下,解释了冶金过程中的化学反应。燃素说流行的一百多年间,化学家为了解释各种现象,做了大量的实验,积累了丰富的感性材料。特别是燃素说认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近、现代化学思维的基础。我们现在学习的置换反应,是物质间相互交换成分的过程;氧化还原反应是电子得失的过程;而有机化学中的取代反应是有机物某一结构位置的原子或原子团被其它原子或原子团替换的过程。这些思想方法与燃素说多么相似。 舍勒和普里斯特里发现氧气的制法 :令后人尊敬的瑞典化学家舍勒的职业是药剂师--chemist,他长期在小镇彻平的药房工作,生活贫困。白天,他在药房为病人配制各种药剂。一有时间,他就钻进他的实验室忙碌起来。有一次,后院传来一声爆鸣,店主和顾客还在惊诧之中,舍勒满脸是灰地跑来,兴奋地拉着店主去看他新合成的化合物,忘记了一切。对这样的店员,店主是又爱又气,但从来不想辞退他,因为舍勒是这个城市最好的药剂师。 到了晚上,舍勒可以自由支配时间,他更加专心致志地投入到他的实验研究中。对于当时能见到的化学书籍里的实验,他都重做一遍。他所做的大量艰苦的实验,使他合成了许多新化合物,例如氧气、氯气、焦酒石酸、锰酸盐、高锰酸盐、尿酸、硫化氢、升汞(氯化汞)、钼酸、乳酸、乙醚等等,他研究了不少物质的性质和成分,发现了白钨矿等。至今还在使用的绿色颜料舍勒绿(Scheele’s green),就是舍勒发明的亚砷酸氢铜(CuHAsO3)。如此之多的研究成果在十八世纪是绝无仅有的,但舍勒只发表了其中的一小部分。直到1942年舍勒诞生二百周年的时候,他的全部实验记录、日记和书信才经过整理正式出版,共有八卷之多。其中舍勒与当时不少化学家的通信引人注目。通信中有十分宝贵的想法和实验过程,起到了互相交流和启发的作用。法国化学家拉瓦锡对舍勒十分推崇,使得舍勒在法国的声誉比在瑞典国内还高。 在舍勒与大学教师甘恩的通信中,人们发现,由于舍勒发现了骨灰里有磷,启发甘恩后来证明了骨头里面含有磷。在这之前,人们只知道尿里有磷。 1775年2月4日,33岁的舍勒当选为瑞典科学院院士。这时店主人已经去世,舍勒继承了药店,在他简陋的实验室里继续科学实验。由于经常彻夜工作,加上寒冷和有害气体的侵蚀,舍勒得了哮喘病。他依然不顾危险经常品尝各种物质的味道--他要掌握物质各方面的性质。他品尝氢氰酸的时候,还不知道氢氰酸有剧毒。1786年5月21日,为化学的进步辛劳了一生的舍勒不幸去世,终年只有44岁。舍勒发现氧气的两种制法是在1773年。第一种方法是分别将KNO3、Mg(NO3)2、Ag2CO3、HgCO3、HgO加热分解放出氧气: 2KNO3==2KNO2+O2↑ 2Mg(NO3)2 == 2MgO+4NO2↑+O2↑↑ 2Ag2CO3==4Ag+2CO2↑+O2↑ 2HgCO3==2Hg+2CO2↑+O2↑ 2HgO==2Hg+O2↑ 第二种方法是将软锰矿(MnO2)与浓硫酸共热产生氧气: 2MnO2+2H2SO4(浓)== 2MnSO4+2H2O+O2↑ 舍勒研究了氧气的性质,他发现可燃物在这种气体中燃烧更为剧烈,燃烧后这种气体便消失了,因而他把氧气叫做“火气”。舍勒是燃素说的信奉者,他认为燃烧是空气中的“火气”与可燃物中的燃素结合的过程,火焰是“火气”与燃素相结合形成的化合物。他将他的发现和观点写成《论空气和火的化学》。这篇论文拖延了4年直到1777年才发表。而英国化学家普里斯特里在1774年发现氧气后,很快就发表了论文。 普里斯特里始终坚信燃素说,甚至在拉瓦锡用他们发现的氧气做实验,推翻了燃素说之后依然故我。他将氧气叫做“脱燃素气”。他写到:我把老鼠放在‘脱燃素气’里,发现它们过得非常舒服后,我自己受了好奇心的驱使,又亲自加以实验,我想读者是不会觉得惊异的。我自己实验时,是用玻璃吸管从放满这种气体的大瓶里吸取的。当时我的肺部所得的感觉,和平时吸入普通空气一样;但自从吸过这种气体以后,经过好长时间,身心一直觉得十分轻快舒畅。有谁能说这种气体将来不会变成通用品呢?不过现在只有两只老鼠和我,才有享受呼吸这种气体的权利罢了。”普里斯特里一生的大部分时间是在英国的利兹作牧师,业余爱好化学。1773年他结识了著名的美国科学家兼政治家富兰克林,他们后来成了经常书信往来的好朋友。普里斯特里受到好朋友多方的启发和鼓励。他在化学、电学、自然哲学、神学四个方面都有很多著述。 1774年普里斯特里到欧洲大陆参观旅行。在巴黎,他与拉瓦锡交换了好多化学方面的看法。正直的普里斯特里同情法国大革命,曾在英国公开做了几次演讲。英国一批反对法国大革命的人烧毁了他的住宅和实验室。普里斯特里于1794年他六十一岁的时候不得已移居美国,在宾夕法尼亚大学任化学教授。美国化学会认为他是美国最早研究化学的学者之一。他住过的房子现在已建成纪念馆,以他的名字命名的普里斯特里奖章已成为美国化学界的最高荣誉。 拉瓦锡和他的天平: 燃素说的推翻者,法国化学家拉瓦锡原来是学法律的。1763年,他20岁的时候就取得了法律学士学位,并且获得律师开业证书。他的父亲是一位律师,家里很富有。所以拉瓦锡不急于当律师,而是对植物学发生了兴趣。经常上山采集标本使他对气象学也产生了兴趣。后来,拉瓦锡在他的老师,地质学家葛太德的建议下,师从巴黎有名的鲁伊勒教授学习化学。拉瓦锡的第一篇化学论文是关于石膏成分的研究。他用硫酸和石灰合成了石膏。当他加热石膏时放出了水蒸气。拉瓦锡用天平仔细测定了不同温度下石膏失去水蒸气的质量。从此,他的老师鲁伊勒就开始使用“结晶水”这个名词了。这次成功使拉瓦锡开始经常使用天平,并总结出了质量守恒定律。质量守恒定律成为他的信念,成为他进行定量实验、思维和计算的基础。例如他曾经应用这一思想,把糖转变为酒精的发酵过程表示为下面的等式: 葡萄糖 == 碳酸(CO2)+ 酒精 这正是现代化学方程式的雏形。用等号而不用箭头表示变化过程,表明了他守恒的思想。拉瓦锡为了进一步阐明这种表达方式的深刻含义,又具体地写到:“我可以设想,把参加发酵的物质和发酵后的生成物列成一个代数式。再逐个假定方程式中的某一项是未知数,然后分别通过实验,逐个算出它们的值。这样以来,就可以用计算来检验我们的实验,再用实验来验证我们的计算。我经常卓有成效地用这种方法修正实验的初步结果,使我能通过正确的途径重新进行实验,直到获得成功。”早在拉瓦锡出生之时,多才多艺的俄罗斯科学家罗蒙诺索夫就提出了质量守恒定律,他当时称之为“物质不灭定律”,其中含有更多的哲学意蕴。但由于“物质不灭定律”缺乏丰富的实验根据,特别是当时俄罗斯的科学还很落后,西欧对沙俄的科学成果不重视,“物质不灭定律”没有得到广泛的传播。 1772年秋天,拉瓦锡照习惯称量了一定质量的白磷使之燃烧,冷却后又称量了燃烧产物P2O5的质量,发现质量增加了!他又燃烧硫磺,同样发现燃烧产物的质量大于硫磺的质量。他想这一定是什么气体被白磷和硫磺吸收了。他于是又做了更细致的实验:将白磷放在水银面上,扣上一个钟罩,钟罩里留有一部分空气。加热水银到40℃时白磷就迅速燃烧,之后水银面上升。拉瓦锡描述道:“这表明部分空气被消耗,剩下的空气不能使白磷燃烧,并可使燃烧着的蜡烛熄灭;1盎司的白磷大约可得到盎司的白色粉末(P2O5,应该是盎司)。增加的重量和所消耗的1/5容积的空气重量接近相同。”燃素说认为燃烧是分解过程,燃烧产物应该比可燃物质量轻。而拉瓦锡实验的结果却是截然相反。他把实验结果写成论文交给法国科学院。从此他做了很多实验来证明燃素说的错误。在1773年2月,他在实验记录本上写到:“我所做的实验使物理和化学发生了根本的变化。”他将“新化学”命名为“反燃素化学”。 1774年,拉瓦锡做了焙烧锡和铅的实验。他将称量后的金属分别放入大小不等的曲颈瓶中,密封后再称量金属和瓶的质量,然后充分加热。冷却后再次称量金属和瓶的质量,发现没有变化。打开瓶口,有空气进入,这一次质量增加了,显然增加量是进入的空气的质量(设为A)。他再次打开瓶口取出金属锻灰(在容积小的瓶中还有剩余的金属)称量,发现增加的质量正和进入瓶中的空气的质量相同(即也为A)。这表明锻灰是金属与空气的化合物。 拉瓦锡进一步想,如果设法从金属锻灰中直接分离出空气来,就更能说明问题。他曾经试图分解铁锻灰(即铁锈),但实验没有成功。 拉瓦锡制得氧气之后: 到了这年的10月,普里斯特里访问巴黎。在欢迎宴会上他谈到“从红色沉淀(HgO)和铅丹(Pb3O4)可得到‘脱燃素气’”。对于正在无奈中的拉瓦锡来说,这条信息是很直接的启发。11月,拉瓦锡加热红色的汞灰制得了氧气。在舍勒的启发下,拉瓦锡甚至制造了火车头大小的加热装置,其中心是聚光镜。平台下面是六个大轮子,以便跟着太阳随时转动。1775年,拉瓦锡的实验中心已从分解金属锻灰转移到了对氧气的研究。他发现燃烧时增加的质量恰好是氧气减少的质量。以前认为可燃物燃烧时吸收了一部分空气,其实是吸收了氧气,与氧气化合,即氧化。这就是推翻了燃素说的燃烧的氧化理论。与此同时,拉瓦锡还用动物实验,研究了呼吸作用,认为“是氧气在动物体内与碳化合,生成二氧化碳的同时放出热来。这和在实验室中燃烧有机物的情况完全一样。”这就解答了体温的来源问题。空气中既然含有1/4的氧气(数据来自原文),就应该含有其余的气体,拉瓦锡将它称为“碳气”。研究了空气的组成后,拉瓦锡总结道:“大气中不是全部空气都是可以呼吸的;金属焙烧时,与金属化合的那部分空气是合乎卫生的,最适宜呼吸的;剩下的部分是一种‘碳气’,不能维持动物的呼吸,也不能助燃。”他把燃烧与呼吸统一了起来,也结束了空气是一种纯净物质的错误见解。1777年,拉瓦锡明确地讥讽和批判了燃素说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意地解释各种事物。有时这一要素是有重量的,有时又没有重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能通过容器壁的微孔,有时又说它不能透过;它能同时用来解释碱性和非碱性、透明性和非透明性、有颜色和无色。它真是只变色虫,每时每刻都在改变它的面貌。” 这年的9月5日,拉瓦锡向法国科学院提交了划时代的《燃烧概论》,系统地阐述了燃烧的氧化学说,将燃素说倒立的化学正立过来。这本书后来被翻译成多国语言,逐渐扫清了燃素说的影响。化学自此切断了与古代炼丹术的联系,揭掉了神秘和臆测的面纱,代之以科学的实验和定量的研究。化学进入了定量化学(即近代化学)时期。所以我们说拉瓦锡是近代化学的奠基者。舍勒和普里斯特里先于拉瓦锡发现氧气,但由于他们思维不够广阔,更多地只是关心具体物质的性质,没有能冲破燃素说的束缚。与真理擦肩而过是很遗憾的。 拉瓦锡对化学的另一大贡献是否定了古希腊哲学家的四元素说和三要素说,辨证地阐述了建立在科学实验基础上的化学元素的概念:“如果元素表示构成物质的最简单组分,那么目前我们可能难以判断什么是元素;如果相反,我们把元素与目前化学分析最后达到的极限概念联系起来,那么,我们现在用任何方法都不能再加以分解的一切物质,对我们来说,就算是元素了。”在1789年出版的历时四年写就的《化学概要》里,拉瓦锡列出了第一张元素一览表,元素被分为四大类: 简单物质,普遍存在于动物、植物、矿物界,可以看作是物质元素:光、热、氧、氮、氢。简单的非金属物质,其氧化物为酸:硫、磷、碳、盐酸素、氟酸素、硼酸素。简单的金属物质,被氧化后生成可以中和酸的盐基:锑、银、铋、钴、铜、锡、铁、锰、汞、钼、镍、金、铂、铅、钨、锌。简单物质,能成盐的土质:石灰、镁土、钡土、铝土、硅土。拉瓦锡对燃素说和其它陈腐观点的讥讽和批判是无情和激烈的。这使他在创建科学勋绩的同时得罪了一大批同时代和老一辈的科学家。在《影响世界历史的一百位人物》中,在许多有关历史、科学史、化学史的书籍中,作者都对拉瓦锡总是突出自己的人格特点进行低调的描述和评价,指责他在《化学概要》里没有提起舍勒和普里斯特里对他的启示和帮助。但我们得看到,拉瓦锡确实具有非凡的科学洞察力和勇往直前的无畏精神。虽然不是他最先发现氧气的制法,但他通过制取氧气分析了空气的组成,建立了燃烧的氧化学说。氧气因此不同于其它气体,被赋予非凡的科学意义。拉瓦锡十分勤奋,每天六点起床,从六点到八点进行实验研究,八点到下午七点从事火药局长或法国科学院院士的工作,七点到晚上十点,又专心从事他的科学研究。星期天不休息,专门进行一整天的实验工作。拉瓦锡28岁结婚时,他的妻子只有14岁。他们一生没有孩子,但生活非常愉快。她帮助拉瓦锡实验,经常陪伴在他身边。在拉瓦锡的著作里,有很多插图都是他的妻子画的。1789年法国大革命爆发,三年后拉瓦锡被解除了火药局长的职务。1793年11月,国民议会下令逮捕旧王朝的包税官。拉瓦锡由于曾经担任过包税官而自首入狱。极左派马拉曾与拉瓦锡有过激烈的科学争论,心存嫉恨,便诬陷拉瓦锡与法国的敌人有来往,犯有叛国罪,于1794年5月8日把他送上了断头台。对此,当时科学界的很多人感到非常惋惜。著名的法籍意大利数学家拉格朗日痛心地说:“他们可以一瞬间把他的头割下,而他那样的头脑一百年也许长不出一个来。”这时,拉瓦锡正当壮年,是51岁。 四、化学学科的发展前沿 中国运动医学杂志000124 基因工程也叫遗传工程(Genetic Engineering),是20世纪70年代在分子生物学发展的基础上形成的新学科。基因工程就是在分子水平上,用人工方法提取(或合成)不同生物的遗传物质,在体外切割、拼接和重新组成,然后通过载体把重组的DNA分子引入受体细胞,使外源DNA在受体细胞中进行复制与表达。按人们的需要产生不同的产物或定向地创造生物的新性状,并使之稳定地遗传给下代[1]。基因工程技术主要包括分离基因、纯化基因和扩增基因的技术,其核心是分子克隆技术。它能帮助人们从各种复杂的生物体中分离出单一的基因,并把它纯化,再把它大量扩增,用于研究。 20多年来,基因工程技术得到了迅速地发展,特别是限制性内切酶、DNA序列分析及DNA重组技术等三大技术的发现和应用,不仅把分子生物学提高到了基因水平,而且也把生物学与医学中的其他学科引上基因研究的道路,并取得了许多揭示生命秘密和生命过程的重大成就 ...... 16817希望对你有帮助!
土木工程概论论文 对土木工程的发展起关键作用的,首先是作为工程物质基础的土木建筑材料,其次是随之发展起来的设计理论和施工技术。每当出现新的优良的建筑材料时,土木工程就 会有飞跃式的发展。 人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。中国在公元前十一世纪 的西周初期制造出瓦。最早的砖出现在公元前五世纪至公元前三世纪战国时的墓室中。砖和瓦具有比土更优越的力学性能,可以就地取材,而又易于加工制作。 砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~19世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。 钢材的大量应用是土木工程的第二次飞跃。 十七世纪70年代开始使用生铁、十九世纪初开始使用熟铁建造桥梁和房屋,这是钢结构出现的前奏。 从十九世纪中叶开始,冶金业冶炼并轧制出抗拉和抗压强度都很高、延性好、质量均匀的建筑钢材,随后又生产出高强度钢丝、钢索 。于是适应发展需要的钢结构得到蓬勃发展。除应用原有的粱、拱结构外,新兴的桁架、框架、网架结构、悬索结构逐渐推广,出现了结构形式百花争艳的局面。 建筑物跨径从砖结构、石结构、木结构的几米、几十米发展到钢结构的百米、几百米,直到现代的千米以上。于是在大江、海峡上架起大桥,在地面上建造起摩天大楼和高耸铁塔,甚至在地面下铺设铁路,创造出前所未有的奇迹。 为适应钢结构工程发展的需要,在牛顿力学的基础上,材料力学、结构力学、工程结构设计理论等就应运而生。施工机械、施工技术和施工组织设计的理论也随之发展,土木工程从经验上升成为科学,在工程实践和基础理论方面都面貌一新,从而促成了土木工程更迅速的发展。 十九世纪20年代,波特兰水泥制成后,混凝土问世了。混凝土骨料可以就地取材,混凝土构件易于成型,但混凝土的抗拉强度很小,用途受到限制。 十九世纪中叶以后,钢铁产量激增,随之出现了钢筋混凝土这种新型的复合建筑材料,其中钢筋承担拉力,混凝土承担压力,发挥了各自的优点。 二十世纪初以来,钢筋混凝土广泛应用于土木工程的各个领域。 从三十年代开始,出现了预应力混凝土。预应力混凝土结构的抗裂性能、刚度和承载能力,大大高于钢筋混凝土结构,因而用途更为广阔。土木工程进入了钢筋混凝土和预应力混凝土占统治地位的历史时期。混凝土的出现给建筑物带来了新的经济、美观的工程结构形式,使土木工程产生了新的施工技术和工程结构设计理论。这是土木工程的又一次飞跃发展。土木工程的特点 建造一项工程设施一般要经过勘察、设计和施工三个阶段,需要运用工程地质勘察、水文地质勘察、工程测量、土力学、工程力学、工程设计、建筑材料、建筑设备、工程机械、建筑经济等学科和施工技术、施工组织等领域的知识 ,以及电子计算机和力学测试等技术。因而土木工程是一门范围广阔的综合性学科。随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。 土木工程是伴随着人类社会的发展而发展起来的。它所建造的工程设施反映出各个历史时期社会经济、文化、科学、技术发展的面貌,因而土木工程也就成为社会历史发展的见证之一。 远古时代,人们就开始修筑简陋的房舍、道路、桥梁和沟澶,以满足简单的生活和生产需要。后来,人们为了适应战争、生产和生活以及宗教传播的需要,兴建了城池、运河、宫殿、寺庙以及其他各种建筑物。 许多著名的工程设施显示出人类在这个历史时期的创造力。例如,中国的长城、都江堰、大运河、赵州桥、应县木塔,埃及的金字塔,希腊的巴台农神庙,罗马的给水工程、科洛西姆圆形竞技场(罗马大斗兽场),以及其他许多著名的教堂、宫殿等。 产业革命以后,特别是到了20世纪,一方面社会向土木工程提出了新的需求;另一方面,社会各个领域为土木工程的前进创造了良好的条件。因而这个时期的土木工程得到突飞猛进的发展。在世界各地出现了现代化规模宏大的工业厂房、摩天大厦,核电站、高速公路和铁路、大跨桥梁、大直径运输管道长隧道、大运河、大堤坝、大飞机场、大海港以及海洋工程等等。现代土木工程不断地为人类社会创造崭新的物质环境,成为人类社会现代文明的重要组成部分。 土木工程是具有很强的实践性的学科。在早期,土木工程是通过工程实践,总结成功的经验,尤其是吸取失败的教训发展起来的。从17世纪开始,以伽利略和牛顿为先导的近代力学同土木工程实践结合起来,逐渐形成材料力学、结构力学、流体力学、岩体力学,作为土木工程的基础理论的学科。这样土木工程才逐渐从经验发展成为科学。 在土木工程的发展过程中,工程实践经验常先行于理论,工程事故常显示出未能预见的新因素,触发新理论的研究和发展。至今不少工程问题的处理,在很大程度上仍然依靠实践经验。 土木工程技术的发展之所以主要凭借工程实践而不是凭借科学试验和理论研究,有两个原因:一是有些客观情况过于复杂,难以如实地进行室内实验或现场测试和理论分析。例如,地基基础、隧道及地下工程的受力和变形的状态及其随时间的变化,至今还需要参考工程经验进行分析判断。二是只有进行新的工程实践,才能揭示新的问题。例如,建造了高层建筑、高耸塔桅和大跨桥梁等,工程的抗风和抗震问题突出了,才能发展出这方面的新理论和技术。 在土木工程的长期实践中,人们不仅对房屋建筑艺术给予很大注意,取得了卓越的成就;而且对其他工程设施,也通过选用不同的建筑材料,例如采用石料、钢材和钢筋混凝土,配合自然环境建造了许多在艺术上十分优美、功能上又十分良好的工程。古代中国的万里长城,现代世界上的许多电视塔和斜张桥,都是这方面的例子。
简单的说,冶金工程就是从矿石、废料等物料中提取有价值的金属、再精炼成产品出售,学科本事主要包括1、冶金理论知识学习,2、工程是指产业化生产,实践,不只是实验室里做实验。
142 浏览 3 回答
229 浏览 4 回答
178 浏览 2 回答
273 浏览 3 回答
206 浏览 2 回答
198 浏览 5 回答
297 浏览 3 回答
303 浏览 2 回答
233 浏览 2 回答
233 浏览 4 回答
170 浏览 3 回答
287 浏览 4 回答
299 浏览 2 回答
264 浏览 5 回答
167 浏览 7 回答