Fourier变换将相对独立的时域和频域联系起来,从整体上展示信号曾经出现过的频率成分,适于分析确定性信号和平稳信号。而自然界实际存在的多是非平稳信号,于是人们提出了一系列新的时频分析理论和方法,分数阶Fourier变换为其中一种。分数阶Fourier变换是一种线性算子。在时频平面上若将Fourier变换看作从时间轴逆时针旋转90度到频率轴,则分数阶Fourier变换算子就是可旋转任意角度的算子,故可认为分数阶Fourier变换是一种广义的Fourier变换,如图1所示。由于光学设备很容易实现分数阶Fourier变换,所以分数阶Fourier变换首先在光信号处理中得到了广泛的应用。后来分数阶Fourier变换的离散化方法的提出,以及其快速计算的实现,分数阶Fourier变换才有了在电信号处理中的应用 。随着分数阶Fourier变换基本理论的完善和发展,分数阶Fourier变换已经广泛应用到了雷达、声纳、通信等各个领域。