间接式地热供热系统与直接式不同,地热水不直接通过热用户散热器,而是通过换热站,将热量传递给供热管网循环水,温度降低后的地热水回灌或排放掉。由于地热水不经过供热管网,热用户中只是循环水,散热器的腐蚀性保护比较容易做到。同时,供热管网的循环泵由于主要是为了克服循环系统的沿程阻力,系统压力也比较稳定,在大规模集中地热供热中推荐采用间接式供热系统。缺点是由于增加了换热站,循环水进入热用户的温度会比地热水的出水温度低。两者之间的温度差反应换热站的温度损失,在循环水被地热水加热之后可以再通过锅炉加热或热泵用于调峰,如图8-8所示。
图8-8 地热间接式供热系统
由于在地热井和热用户散热器之间多了一个换热站,因此在热力计算上比直接式供热系统复杂。
1.热力参数设计
间接式供热系统的供热参数方程可以表示如下:
沉积盆地型地热田勘查开发与利用
其中常数C3,C4为
沉积盆地型地热田勘查开发与利用
式中: ,其他的参数物理意义如下:Gh,Gc为地热水和供热管网循环水流量(kg/s);Ar,A为用户终端散热器和换热站的传热面积(m2);K为换热站的总传热系数(W/(m2℃));α,β为终端散热器的散热性能经验系数;F为换热站对1-1逆流流程的修正系数(可以查换热器设计表或图)。
间接式供热系统的供热量Qid可以通过求解方程式8-16的根得到,然后根据如下两式求解热用户的热水入口温度和回水温度:
沉积盆地型地热田勘查开发与利用
举一个设计例子来说明以上公式。设计参数如表8-7。
表8-7 间接式地热供热设计例参数
通过建立热平衡方程式,包括建筑物热损失、建筑物内散热器散热、管网循环水和换热站4部分的热量守恒方程,即可以得到关于有{Ts,Tb,Tr,Q}或者Tr固定不变{Ts,Tb,Tr,Gh}4个未知数的热量守恒方程式。如果是4个未知数,可以通过式8-15至式8-19求解得到,结果如图8-9a所示,地热水流量Gh不变,随着循环水流量的增加供热负荷有最大值出现,另外回水温度增加,室内温度Tr基本保持不变。如果Tr固定不变,可以计算在不同室外温度条件下需要的地热水最小流量(Gh)min。此时,计算方法是首先根据建筑物的热指标(式8-3)计算得到供热负荷Q。然后由式8-15至式8-17计算得到不同循环水Gc所需最小流量Gh。图8-9b给出了在地热水流量Gh不变的条件下,改变循环水流量时的最大供热负荷(对应最小的地热水流量),如果最大供热负荷点对应的是设计室温,那么在其他循环水流量下,室温会随着偏离最佳运行点而有所下降,但由图89a可知室温变化不大。
图8-9 热力参数随循环水流量的变化
2.间接式地热供热系统的热力调节
由于间接式供热系统有4个变量,即{Ts,Tb,Tr,Q}或者Tr固定时{Ts,Tb,Tr,Gh}之间相互耦合,因此调节方法与设计方案密切相关,并且间接式供热系统也有一些规律或者说原则性问题值得注意。
与直接式供热方式相同,间接式供热系统可以采用控制供热管网的入口温度的质调节方法,也可以采用控制循环水流量的量调节方法。但是,值得指出的是间接式供热系统的量调节不能靠直接改变循环水流量得到,二次循环水流量Gc的改变也会导致供热管网的入口温度Ts的改变。换热站的存在使供热管网的入口水温低于地热水温。一般情况下,换热器循环水通过换热站被地热水加热后的出水温度Ts及换热量Q随循环水流量Gc的变化关系如图8-10所示。图中标示出的地热水侧流量Gh保持不变。换热器的传热学分析表明循环水流量Gc应当运行在大于地热水流量Gh的范围内比较合理。文献[4]给出了不同换热器传热性能条件下的换热器优化设计和控制调节方法,具体分析过程可参考该文献。在地热水流量固定,获取最大热量的最佳条件是:
沉积盆地型地热田勘查开发与利用
式中:R2为Gh/Gc, , ;Ph,Pc为以地热水和循环水侧定义的换热器温度效率;Ntuh为以地热水侧定义的传热单元数; ,r为换热器的污垢热阻;αh为地热水侧的传热系数; 为循环水侧与地热水侧单通道横截面积比的m次幂,如果是等截面通道板式换热器, =1则是板式换热器传热准则式Nu=CRemPrn中的经验指数。
求解式8-21是一个较繁琐的过程,这里仅给出几点结论:
1)一般对于等截面板式换热器,R2≈,即Gh=为最佳运行条件。
2)污垢热阻增加后,要获得最佳运行需要增加循环水的流量,即R2<。
3)板片传热性能的强化,即m的增加对应的最佳运行条件R2>。
4)采用不等截面板式换热器时,最佳运行条件基本上可以认为是流量与流通截面的面积呈比例关系,较大截面面积侧为循环水侧。
图8-10 地热水经过中间换热站的换热量和出口温度随循环水流量的变化
图8-11和图8-12分别给出了间接式地热供热时的质调节和量调节示意曲线,值得指出的为了保持循环水侧管网入口温度Ts(图8-12)保持不变需调节地热水流量Gh。
图8-11 间接式地热供热时的质调节示意曲线
图8-12 间接式地热供热时的量调节示意曲线
3.直接与间接式供热系统的热特性比较
间接式供热系统的热利用效率要比直接式供热系统的低,它们热利用效率的差别也关系到其经济效益的对比和供热方案的选择。充分的可行性方案论证之前,应当对直接式供热系统和间接式供热系统的热性能区别有所了解。
以下我们给出两个定义:相对热效率η、相对最佳热效率ηopt。相对最佳热效率是指相同供热负荷条件下直接式供热系统所需的地热水流量与在最佳运行条件下间接式供热系统所需的地热水流量的比。如果间接式供热系统不是运行在最佳状态下,那么相对于最佳状态有个相对效率,记为ηid。相对热效率是指直接式供热系统所需的地热水流量与间接式供热系统所需的地热水流量比,间接式供热系统可能不是工作在最佳状态下。因此,相对热效率η与相对最佳热效率ηopt存在如下关系:
沉积盆地型地热田勘查开发与利用
式中:角标“id”为间接式;“d”为直接式;上角标*为地热水侧。
图8-13给出了在不同室外温度下,直接式供热和间接式供热需要的地热水流量。间接式供热系统是在最佳状态下运行的。可见在地热井水温度 固定的条件下,直接供热和间接供热的相对差别在 ,由于直接供热系统的排水温度低,在相同的热负荷下所需的地热水流量少。如果设计的热负荷小于实际的热负荷,那么会使间接式供热系统的运行效率降低,在环境温度降低时,直接式与间接式供热系统的差别越大。图8-14给出了在设计室外温度(-9℃)时改变供热面积(或热负荷Cq)条件下,相对热效率η随循环水流量的变化趋势。在设计热负荷下(Cq=)的相对热效率可以达到80%,但如果热负荷增加(如Cq=)相对热效率会下降,相反如果热负荷降低(如Cq=)相对热效率会增加。同时图中还显示出在热负荷增加的情况下,循环水流量应随之增加以保证间接式供热系统运行在较佳的工作状态,了解这一点对调节和控制间接式供热系统非常重要。
图8-13 不同室外温度下供热需要的地热水流量
图8-14 相对热效率η随循环水流量的变化趋势
间接式供热系统的保守设计将使其运行在较高的相对热效率下,保守的设计意味着同时增加终端散热器的面积和换热站换热器的面积,单纯地增加一方的面积带来的收益不大,优化设计系统换热面积的方法可见参考文献。