工程测量被广泛应用于测绘、国土规划、土建工程等多领域,包含普通测量、控制测量、地形测量、海洋测量、大地测量、道路测量、建筑测量、地下工程测量、桥梁工程测量、隧道工程测量等技能的专业技术。下面是我为大家整理的有关工程测量论文 范文 ,供大家参考。
《 工程测量在水电水利工程建设中的作用 》
摘要:工程测量可为水利工程建设提供准确的数据、资料,对水利工程建设具有重要意义,保持水利水电工程的安全运行,为人民生命财产安全提供着技术性的支持,对促进水利水电事业起着至关重要的作用。本文从以下几个方面对工程测量在水电水利工程建设中的重要作用进行了详细论述。
关键词:工程建设;工程测量;测量数据;作用
在水利水电工程中,测量是一项很重要的工作,它贯穿着水利水电工程建设全过程。经过准确、周密的测量后,水利工程可以顺利的按图施工,还可以为施工质量提供重要的技术支持与保障,更是质量检查的主要手段与 方法 。在规划设计水利工程时,需要进行地形资料的收集与整理,要提供提供中、小比例尺的地形图以及相关的信息,在进行建筑物的设计时需要注意,应该提供的是大比例尺地形图。所以,工程建设与工程测量是确保水利工程项目建设,能够取得成功的重要基础与关键。
1水电水利工程建设中工程测量重要性
(1)现今测量作为一门专业技术,以其能够将设备、建筑物等按照大小、形状、位置等不同设计要求在实地进行标定,以及够准确的采集和表示各种地貌及地物的几何信息等显著特点,被广泛应用到了各种工程建设之中。水利工程施工测量是保证工程施工测量过程处于受控状态,并严格按设计图纸、修改通知、技术规范和合同等的具体要求,进行控制测量的作业。通过资料和图纸进行规划和设计,同时选定最为经济、合理的方案,再通过测量与各项工程的施工相配合,并确保设计意图的正确执行。为满足竣工后工程在管理、使用、维修乃至扩建时的需要,还需编绘竣工图。工程测量数据还可为确定水利工程的堤坝高度、设计水利工程中的各项水工建筑等提供依据。
(2)水利工程结构定型的依据即工程测量,工程测量决定了水利工程的设计和定位,可以利用工程测量来确定水利工程基础、诊断水利工程问题,并且是诊断水利工程质量的最重要手段,各种测量数据可尽早的发现水利工程存在的问题,其意义十分重大。施工测量准备工作是保证整个工程施工测量工作顺利进行的重要环节,包括施工图纸的审核,监理单位提供的平面坐标点和高程点的交接及校核,施工测量方案的编制与数据的整理等。测量在高程放样方面可为模板施工提供准确的基准点,能够保证模板施工的平整度以及混凝土施工提供标高控制线,以确保其在施工后和平整度。工程测量可以为工程施工管理提供可靠的资料以及技术支持,并可对水利工程项目混凝土施工中混凝土种类的使用、混凝土厚度等提供精确的数据。
2水电水利工程测量存在的问题
(1)在水利工程建设要达到水利工程项目建设质量不断提升的目标,就需要进行详细的工程测量,并将工程测量的数据予以应用,以消除那些不可预见的因素确保工程质量。水利工程的施工质量对区域性经济发展和居民的生命安全有重要的影响,在水利水电工程建设阶段需要明确各个控制要点,满足工程实际测量体系的具体要求。在水利水电工程开工建设前期的测量工作,必须按照建设单位的建设规模和具体要求,以及按照项目所在地的自然条件和预期目的进行规模设计。否则将会出现测量数据的误差,就有可能导致水利工程在施工过程中出现严重的质量问题,甚至是引发重大的安全事故造成严重的经济损失,同时对社会方面也会增加严重的负面舆情。
(2)主体结构的施工过程中,要重视工程测量对多方面数据确定的影响,要做好水利工程的轴线、坡面的平整度、 渠道 的中线、大型水利工程建筑物垂直度控制以及主体标高控制等项工作,以防止出现、变形、偏位、渗漏等常见病害的发生,造成对水利工程质量的严重伤害,从而使水利工程项目在日常运行过程的安全性能受到影响。还要作好水工建筑物的变形观测,杜绝由于水工建筑物沉降、位移所引起的安全质量事故发生,以确保水利工程安全的稳定性。工程测量对水利水电工程建设有一定的指导性意义,因此需要结合施工工程设计形式的要求,对不同的设计环节进行分析,适应水利水电工程的建设需求。
3工程测量在水电水利工程建设中的管理与应用
(1)工程测量不但广泛的应用于建筑、土地测量等领域,其在水利工程建设也占据着重要的位置。工程测量能够为水利工程建设提供各项数据,可能保证水利工程建设基础的质量,从而确保整个水利工程项目的质量。随着计算机技术的飞速发展以及“互联网+”时代的到来,出现了地面测量、数字化测绘和RS、GIS、3S、GPS等,先进技术设备和集成测绘新技术的深入应用,使水利水电工程测量的手段和方法进行着快速的更新换代,同时也在不断的开拓着服务领域。这些测量方法最大的特点就是可对数据进行修正,能够让测量对象的参数得到及时修正,提升测量数据的精准度和连续性。
(2)在结合实际对测量工作进行合理的安排,有效提升测量精度,推动水利水电工程建设、促进区域经济健康发展的同时,还应该注重加强包括测量技术水平提高、责任意提升等施工管理人员综合能力素养方面的培养,这样有助于在具体的工作中,采取切实有效的 措施 与方法,以确保工程测量的准确性。需对具体管理人员以及施工人员的工程测量意识进行巩固与加强,通过培训等对他们的质量意识和责任意识进行不断完善,使其在工作能够做到按部就班、不出纰漏,按照流程根据施工图纸进行放样,确定控制高程,以为后面的施工奠定基础,从而加强工程质量。
(3)现阶段对大坝水底地形的测量,主要还是技术人员根据卫星定位技术与多波束探测仪之间的紧密配合来进行的。近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩,在此基础之上我们还应注意,要加强管理人员以及施工人员的测量意识,要进一步提高对测量工作的重视度,从而达到各个环节工程测量水平的全面提升。随着测量数据传播与应用的多样化、网络化及社会化和测量数据采集与处理的实时化、自动化及数字化,还有测量数据管理的标准化、规格化与科学化,水利水电工程测量技术一定会有一个辉煌的未来。
4结束语
工程测量精准的观测成果,为水利水电工程质量和人民生命财产的安全提供了坚实的保障。水利工程的规划、设计和施工以及运行管理等各环节、各阶段都离不开测量工作。工程测量工作要不断的 总结 工作 经验 ,提升专业素质,引用、掌握先进测量仪器,以满足不同时期水利水电工程的不同需求。
参考文献:
[1]杨玉平,杨玉华.论工程测量在水利水电工程建设中的重要性[J].江西测绘,2014,(4):53-54+57.
[2]李添萍.浅析水利水电工程质量检测的重要作用[J].青海科技,2010,(4):136-138.
《 建筑工程测量施工放样方法及应用 》
摘要:随着我国经济发展水平的不断提高,建筑行业得到了显著发展,建筑工程测量作为建筑工程的重要组成,在整个建筑施工前期阶段发挥着重要作用,需要不断对工程测量施工放样技术进行改进与创新才能满足建筑项目需求。本文将对建筑工程测量施工的放样方法与应用进行分析,从而表现做好测量放样处理对工程的重要性。
关键词:建筑工程测量施工放样方法技术探讨
建筑工程开展过程中对尺寸与施工范围有着严格要求与控制,这就需要应用测量放样技术,工程测量存在于整个施工阶段,对施工质量与施工开展有重要意义,需要对放样精度与测量结果反复对比,增强测量放样的精度。鉴于测量施工结果是施工依据与参照,一旦放样测量出现误差,将会影响立模、打桩、钢筋混凝土施工方方面面,在施工位置上容易出现偏差,对施工方带来损失。
1建筑工程测量施工放样概述
内涵
施工放样就是按照设计图标注的内容实地定标的过程。此过程需要使用到全站仪、测量仪器等设备,需要明确设计图纸上平面位置与高程,使用测量仪将实地位置标记出来,按照建筑物间几何关系将距离与特征确定出来,得到距离、高程、角度等数据,再结合控制点位置,在实际建筑中将建筑物特征点标定出来。
施工放样的主要方式
(1)平面放样。
施工放样分为平面位置放样与高程放样两种。平面位置放样较为常见的方法有直角坐标法、方向线交法以及交汇法,每一种方法基本操作方法都需要按照长度与角度进行;极坐标法则是使用数学极坐标原理将极轴确定为连线轴,将其中的某一极点作为放样控制坐标,将极点距离与放样极点连线方向到极点的夹角计算出来,将其作为放样参考[1]。通常,放样点距离控制点很近,需要极坐标与其保持120米距离,这样在测量时将更加方便,角度测量可以使用经纬仪或者测距仪,在使用电子测距仪时需要将控制点的距离延长,这样才能使放样作业更加方便、灵活;直角坐标法主要就是保持坐标轴的平行控制线,先沿横坐标放样,再沿控制线方向放样,只需将直角测设出来便可。
(2)高程放样。
几何水准测量法应用时需要先控制高程点,将控制点精度引入到施工范围内,使用方便固定与保存的方法,在水准点的保密上可以使用一次仪器完成高程放样。常规测量方法为:放样点附近到控制点存在高差,此时,需要使用较长钢尺对高程测设。具体施工中需要使用木桩将放样高程固定下来,使用红线对木桩侧面标记,需要结合具体情况注记高程。三角高程测量法:对水平距离与天顶距两点进行观测,将两点的高差计算出来,这种观测方法虽然简单,但受条件限制需对大地控制点高程测量。基本原理为:将地面两点设为a、b,站在a点观测b点标高,将竖向角度设为α,两点水平距离为S0,a点仪器高设为i1,i2作为标高,此时a、b两点间高差表示为:S0tgα,假设地球表面是一个平面结构,能利用上述公式将直线条件计算出来,大地测量时,还需要对地球弯曲与大气垂直折光度充分考虑[2]。为将三角高程测量精度提高,可以使用对向观测法,将两点高差推导出来。
建筑工程总定位放样方法
可以使用经纬仪将放样方向确定下来,再使用钢尺将测量距离,对地势较平坦的地区需要将定向设置在平缓点位置,再使用测距仪完成测量。曲线定位放线也是常用手段,分为直线、圆曲线等,先将圆曲线桩坐标设计出来,再对坐标加密处理,利用公式进一步对坐标测算。
2放样中注意的问题
放样工作中,有很多内容需要注意:首先,在主轴点放样中,可以使用三点交会法、三边测距法,不能仅使用两点测角定点法,需要选择至少三个方向,将校核点设定为第三点。如果使用测角定点,则要在观测时从四个方向出发,丈量好轮廓距离,不管使用哪种放样法,都需要与理论值对比,防止出现误差。在使用光电测距法放样定点式,现场至少选择一个放样点,丈量设计间距时,能够使校核作用增强。如果通过规则图放样使,则首先要考虑的是放样点间的几何关系,并反复检查几何关系,使用方向法放样时,在使用仪器时可以确定至少两个方向,对方位观察看是否合格,如果精度过低或者存在倾斜,要使用天顶距观测法,防止出现校核偏差。
3放样过程中的现场平差
现场平差就是指在现场放样,现场测量存在偏差消除时可以使用现场平差法。比如,在测放某一个方向时,需要先定点倒镜与正镜,最终将两个方向中点方向值确定下来。在建筑施工中,对测量放样精度有较高要求,分为严密性与松散性要求,从建筑物角度看,严密性与构件存在相关性,如果放样存在的误差较大,将使建筑质量降低。而建筑各部分间的联系则能体现松弛关系,这种情况下需要对建筑各部分有深入了解,将三维数据规定确定下来,也可以结合施工具体情况将放样影响度降低[3]。要想更深刻了解放样精度特征,需要使放样保持严密性,多对严密性进行考虑。如果针对松散构件,则要将误差分散开,确保总体工程质量不会受到影响。与现场平差不同的是,不是将误差全部消除,而是将其放样到质量相关的地方,对其进行吸纳。如果是精密性较高的建筑部位,则要从控制主轴线上实施放样工作,不用考虑控制网精度设计,在完成对主轴线测设后,就可以将建筑部位设定为主轴线基础,将主轴为基准才能确保建筑具备严密性,减少测设带来的精度误差,保证测设的严密性。在具体施工中,还能在主轴基础上将误差分散到建筑各个部分,防止误差过于集中。
4防范误差的对策
受多种因素的影响,测量经常出现误差,极大影响到了建筑施工的顺利开展,人员组成、操作以及施工管理都是重要的影响因素,必须切实做好这些内容的管理与防范才能减少误差。要想将测量放样误差减少,首先就要做好测量准备工作,反复校核设计图纸中的数据,并核实总平面数据与坐标,将基础图与平面图轴线位置确定下来,对符号与标高尺寸进行检查,确保各项数据、参数的准确,对总平面布设位置与分段尺寸进行设定,使分段长度与各段长度一致。其次,还要在人员组织分配上尽量选择技术精湛、有高度责任心的施工人员,将这些人员分为5组。在具体测量中,需要准备好测量仪器与工具,并调整好仪器的温度,增强仪器使用的效率与准确性。及时将测量结果记录下来,确保测量的数据能够更加真实、准确,并能在核对中及时发现问题、解决问题,必须经过两个人反复核对以后才能将最终结果确定下来,使用加减相消法能够及时发现错误。针对问题采取科学、有效的定位复测措施,完成定位以后,复测建筑平面几何尺寸与角度坐标,对建筑物图纸设计与标高是否相符进行核对,对建筑方向准确性进行检查,发现存在的问题。质量监督机构要定期对放样操作进行监督,将质量管理检查机构建设起来,采取自检、互检以及复检方法使放样精度得到保证。
5结束语
建筑工程测量施工是一个复杂且漫长的过程,是建筑施工中必不可少的组成,一个环节出现误差或者遗漏就会对整个施工质量造成影响,为施工单位带来损失。为此,加强放样管理,强化放样操作,做好校核平差工作显得非常重要。这有这样,才能将测量误差消除,确保建筑工程质量与测量精度。
参考文献
[1]邓志永,冯显征.建筑施工测量误差分析及对施工放样精度要求的探讨[J].建筑工程技术与设计,2014(22):779-779.
[2]袁俊利.采用传统测量技术进行复杂立交桥工程测量的方法和措施[J].建筑技术,2012,43(9):806-809.
[3]郝安华,贾涛.试论市政道路工程测量放样控制工作的要点与对策[J].商品与质量•建筑与发展,2014(5):
《 地铁工程测量技术及应用 》
摘要:在地铁工程项目中,地铁测绘工作及测量技术是项目建设的基础工作,它不仅贯穿于整个地铁工程建设始终,还对地铁工程质量产生重要影响。本文结合地铁测绘工作的实践经验,分析了常见的地铁工程测量技术,就具体的实践应用进行了分析探讨,以期对相关的地铁工程测绘工作有所启示作用。
关键词:地铁测绘;测量技术;地铁工程
伴随我国经济建设的蓬勃发展,各地城市交通建设也面临着全新的发展局面,作为城市交通的最基础建设之一,地铁工程与百姓生活密切相关,其工程质量自然也备受社会关注。地铁测绘工作是地铁工程的一项重要环节,它贯穿于整个地铁工程,从地铁工程开始筹划直到工程的后续运营,几乎都离不开测绘工作的支持。因此作为工程施工单位,需重视地铁工程测量技术的应用,保证测量的准确性,提高工程建设水平。本文结合具体工程实例,对上述问题进行探析,具有一定的参考价值。
1.地铁工程概述
为方便本次研究分析,本文选取了某地铁工程的具体实践建设作为研究参考对象。工程为某城市的地铁线路,是南北方向的主干线,线路全长约,其中地下线长约,地上线长约,该项工程是解决主城南北客运主流向出行需求的南北主轴线。结合本次地铁工程概述及以往的施工经验,总结本次地铁工程测绘工作和测量技术工作具有以下特点。首先,本次地铁工程项目属于城市地铁线路主干线,对城市交通影响较大;而且地铁项目投资大,工程建设周期长,因此地铁测绘工作要贯穿于整个项目始终,从地铁工程开始筹划直到工程的后续运营,都需要测量技术支持。其次,地铁工程界限规定严格,施工过程中存在的误差都必须受到严格控制,测量技术必须有精确性和可靠性的保障。最后,地铁测量工作必须抓好每一个细节,要通过测量技术的管理提高项目管理质量,对于施工过程中一些关键环节如铺轨基标测量、隧道施工方面测量等,都要做好严格把控,从整体上提高测量技术水平,为地铁工程打下良好的基础。
2.地铁工程测量技术分析
地铁测绘工作贯穿于整个地铁工程建设项目始终,具体包括工程勘测阶段、地铁施工图设计阶段、地铁施工测量阶段、地铁的运营期等几个方面。本文主要从施工阶段对地铁工程测量技术的应用进行分析,具体如下。
测量机器人的应用
测量机器人是本次地铁工程施工阶段的主要测量技术,其具体实质上属于一种智能型电子全站仪,它能够代替人工来进行一系列的测量工作,如自动搜索、跟踪、识别,此外它还能精确照准目标并获取角度、距离、三维坐标以及影像等信息,在实际工程中取得了良好的测量效果。该项技术的测量优势在于测量精度高,智能自动化,自动照准,锁定跟踪,遥控测量及自动调焦等。本次工程测量实例中应用了测量机器人,对于本次地铁工程测量的可靠性和效率都有明显提升,测量精度度高,测量与绘制工作可以一体化进行。在实际工程中发现,测量机器人有着良好的对数据实时分析处理能力,这对于提高本次工程数据处理能力,提升测量精度发挥了重要作用。此外,电子全站仪的应用实现了集成化管理,可以有效确保数据的共享交换,施工放样的质量和效率都大幅提升,安装误差控制在一个很小的范围内。
定向测量
传统的竖井定向测量手段均采用全站仪、垂准仪和陀螺经纬仪联合的方式,而在本次工程的具体实例中,应用了定向测量系统,在隧道盾构的情况下,利用自动化引导系统进行隧道开挖,而且定向测量能够实现实时显示,对于隧道轴线的点偏移值能够及时发现并处理,保证了隧道开挖的可靠性,提高了隧道开挖的精度程度,对于工程中所存在的误差值也能控制在理想的范围内。此外,在本次工程的地下顶管施工过程中,考虑到传统的施工手段技术(即人工测量)费时费力,施工效益低下,因此在本次实际施工中采用了顶管自动引导测量系统,由计算机远程控制测量机器人来自动完成作业,取得了非常理想的施工效果。
断面测量
在本次工程的断面测量上,施工单位综合采取了断面测量系统,该系统的具体内容包括了全站仪、数据采集器、计算机和觇牌等等。在隧道施工中的各个环节上,该断面测量系统取得了良好的实践效果,放样、测量、检测和计算等诸多环节上都没有出现问题。在隧道的初砌和开挖工作中,测量准确性得到了保证,同时测量效率提升,节约了大量的人力物力。本次施工发现,利用断面测量来保证隧道施工的测量工作,一方面可以大大提高施工进度,测量速度有保障;另一方面,在同等的施工时间内,测量精度可以控制在理想范围内,一般精度范围可控制在毫米,测量精准度大大提升。此外在本次施工工程中,还利用到了无反射和全自动棱镜三维断面测量,一方面保证了测量数据采集的高效性,另一方面由于实现了多断面共同测量,且操作简便高效,可靠性强,因此又进一步提高了测量效率。
无棱镜测量的应用
在本次的地铁工程施工中,还涉及到了无棱镜测量机器人的具体应用。该项技术通过辐射测量极坐标的方式,准确并高效地完成了一系列的工测量工作,具体包括了隧道掘进放样、断面测量、围岩净空位移量测等等,测量精确度高,测量效率好。该项测量技术进行了有针对性的创新,在工程中利用计算机自动处理,有效减少了工程成本,测量起来也十分方便。该项测量技术的一个典型特点是把设计图中的地铁相应物体的位置及大小都放到实地中,这种趋近于真实的参考参照,大大提高了本次工程的放样精确程度。此外,施工基坑监测系统能够实现对数据的及时分析管理,对于地铁基坑监测项目也具有非常高的可行性。
地铁施工铺设阶段
在地铁施工铺设阶段,本次施工也采用了测量机器人。该项技术的主要原理是应用到了无线传输技术,通过它将测量数据持续传输到机载计算机,然后再利用计算机实现对地铁铺设的精确控制。通过该项技术在本次工程施工中的应用,施工铺设的安全性与质量都得到了有效保障。同时在铺设精度得到有效控制的前提下,铺设成本大大降低,工程经济效益得到了有效保证。此外在施工路面扫描系统中,测量机器人也有很高的应用价值,可将监测目标分为圆棱镜,无棱镜和反射贴片三种。
竣工测量阶段
在本次项目的地铁工程竣工阶段,也需要进行大量的数据测量,这些测量的数据将作为竣工验收的参考,并做相应好存档工作。这些具体的测量内容包括了地铁结构的平面位置、埋深、线路等诸多方面。通过测量机器人的应用,可以实现对相关建筑物(包括附属结构)的尺寸测量、线路及高程测量等,提升了轨道测量精度,保障了地铁工程测量放样的顺利实现。
总结
综上所述,地铁测绘工作是一项系统且复杂的内容,它贯穿于整个工程始终,并对工程质量提供了强有力的保障。在当前各地城市交通建设不断发展的新时期,地铁工程自然占据了十分重要的位置,相关单位需要在保证工程质量的前提下,加强工程测量管理工作,强化对地铁工程测量技术的研究,保证测量各个环节的质量与水平,确保工程顺利开展并取得良好的综合效益,推动我国地铁交通事业的发展迈向一个新高度。
参考文献:
[1]张铁斌.地铁工程测量技术及应用分析[J].科技展望,2015,09:39.
[2]龚振文,龙晓敏,胡朝英.昆明地铁工程测量技术分析及测绘新技术应用[J].山西建筑,2013,33:208-210.
[3]程栋.地铁工程测量中平面联系测量的应用[J].科技展望,2015,35:35.
有关有关工程测量论文范文推荐:
1. 有关工程测量论文范文
2. 有关工程测量毕业论文范文
3. 工程测量毕业论文范文
4. 工程测量工程论文范文精选
5. 浅谈工程测量论文范文
6. 工程测量毕业论文例文
7. 工程测量技术论文
三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
数学论文范文参考
数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
( 一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
( 二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
( 一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
( 二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
( 三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献:
〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.
〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.
〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.
浅谈高中数学文化的传播途径
一、结合数学史,举办文化讲座
数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、
二、结合教学内容,穿插数学故事
数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、
三、结合生活实际,例解数学问题
作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、
四、结合其他学科,共享文化精华
科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、
五、结合课外活动,小组合作探究
由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、
六、结合教学评价,纳入数学考试
虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。
勾股定理论文:勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人
关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径 隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: •东汉末至三国时代吴国人 •为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。
228 浏览 3 回答
163 浏览 3 回答
185 浏览 4 回答
332 浏览 3 回答
248 浏览 4 回答
313 浏览 2 回答
111 浏览 5 回答
106 浏览 7 回答
174 浏览 3 回答
234 浏览 3 回答
185 浏览 2 回答
340 浏览 4 回答
344 浏览 3 回答
317 浏览 5 回答
166 浏览 2 回答