您的数据应该是交叉链接的,数据输入格式是:创建两个变量,变量1是组。
正常对照组使用数据
1、病例组用数据
2、变量2是效能的分类变量,1表示分类属性1,2表示分类属性2。然后还有另一个变量
3、也就是,箱子的数量。在数据录入完成后,加权频率将被分析的分析-统计-统计-交叉- - -和变量1被选择成行。
所以,我要选择变量2到列中,然后点击统计信息,打开对话框,我要检查卡方,然后点击“继续”,然后点击“确定”,第三张表是卡方测试,第一行的第一行是卡方值,接着是自由度,最后是P值。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
步骤:
(1)提出原假设:
H0:总体X的分布函数为F(x).
如果总体分布为离散型,则假设具体为
H0:总体X的分布律为P{X=xi}=pi, i=1,2,...
(2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取
A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak),
其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5,而区间个数k不要太大也不要太小。
(3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和f1+f2+...+fk等于样本容量n。
(4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i 个小区间Ai的概率pi,于是,npi就是落入第i个小区间Ai的样本值的理论频数(理论值)。
(5)当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。基于这种思想,皮尔逊引进如下检验统计量
,在0假设成立的情况下服从自由度为k-1的卡方分布。
扩展资料:
卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。
注意:卡方检验针对分类变量。
参考资料:百度百科-卡方检验