(一)杂交与远缘杂交
1.离体胚、胚珠和子房培养
离体胚、胚珠和子房培养是克服芸薹属植物远缘杂交障碍的常用方法。Inomata(1978)首次成功地将子房培养应用于白菜与甘蓝的种间杂种胚挽救。巩振辉(1995)通过子房培养成功地获得白菜与白芥的属间杂种。
2.原生质体融合
细胞融合避开了有性交配过程,因此不存在受精不亲和的问题。近年来,在高等植物上,体细胞杂交已有相当进展。在有性杂交不能进行时,可采用体细胞杂交获得种、属间杂种。Takeshita et al.(1980)通过甘蓝与白菜的原生质体融合,人工合成了甘蓝型油菜。体细胞融合为从亲缘关系较远或受精亲和性极低的杂交组合中获得新材料、新品种开辟了一条新途径。
3.多代连续回交
多代连续回交法对种间或属间远缘杂交克服杂种不育具有一定的效果。在回交中,至于利用哪一原亲本回交,这取决于要回交出的后代保留哪一亲本的优异遗传性状,如果回交一次不够,可连续进行第二次或第三次回交。据大白菜的有关研究,值得说明的是,回交的结实力与杂种一代和双亲类型有关。
4.诱导二倍体
由于某些远缘杂交杂种中没有同源染色体组或完整的染色体组存在,杂种完全不育。通过人工处理诱导双二倍体可以成功地克服不育性。如用秋水仙碱处理杂种幼苗可以产生双二倍体而成功地克服不育性。应该指出的是,并非所有远缘杂交F的不育性都可以通过染色体加倍而克服,只有在F的减数分裂由于来自父母本的染色体不存在同源性而不能配对,仅有极少数能配对的情况下,加倍杂种染色体数才会使杂种的育性提高。
白菜种曾进行了广泛的种间和属间杂交,Warwick,SI和(1994)在Guide to the Wild Germplasm of Brassica and Allied Crops中列出了大量的远缘杂交实例。
(二)细胞工程技术
从本世纪初以来,单倍体一直是植物育种工作者们所努力追索的目标,游离小孢子培养与花药培养均可以得到单倍体,进而形成DH植株,但与花药培养相比,用于游离小孢子培养的是分离纯净的小孢子群体,产生的胚和再生植株都来自于小孢子细胞,排除了花药壁和绒毡层组织的干扰;另一方面,利用游离小孢子培养技术能够在较宽的基因型范围内以较高的胚状体发生率获得小孢子胚和再生植株,而小孢子植株又具有自然加倍成为二倍体的特点,因此,游离小孢子培养在遗传和育种研究方面具有十分诱人的应用前景。
20世纪70年代初,Nitsch等(1973)在进行曼陀罗(Datura stramonium L.)花药培养研究的同时,建立了游离小孢子培养技术,Lichter(1982)率先在芸薹属的甘蓝型油菜(Brassica napus L.)游离小孢子培养过程中获得胚状体以及再生植株,并发现小孢子胚胎及其再生植株发生率远高于花药培养。近20年来,这项技术在大白菜育种中的应用已日趋成熟。20世纪80年代末,Sato等(1989)首先进行了大白菜游离小孢子培养。90年代初,曹鸣庆等(1992)率先在国内开展了大白菜小孢子培养。目前国内已有数家单位开展了这方面的研究工作,并且已成功应用于育种实践。栗根义等(1999;2000)应用游离小孢子培养技术育成了优良新品种豫白菜11号、豫白菜7号等。曹鸣庆等(1993)应用游离小孢子培养技术获得了抗除草剂大白菜植株等。目前,大白菜小孢子培养技术已经成为创新种质资源的常规技术,并发挥着越来越大的作用。
游离小孢子培养技术还可以用于各种抗性突变体的筛选。Akmad等(1991)通过紫外辐射诱变处理早熟油菜小孢子,得到了少量对Alternaria brassicicola抗性增强和对除草剂“CleanR”具有抗性的后代。曹鸣庆研究组曾将大白菜黑斑病(Alternaria brassicae)毒素加入培养基,结果从诱导得到的小孢子胚中筛选出了对黑斑病表现一定程度抗性的大白菜小孢子植株。
(三)基因工程技术
随着组织培养和DNA重组技术的建立和不断完善,现代生物技术在许多作物的种质创新和新品种选育中日益得到广泛应用。但是,由于大白菜组织培养难度较大,再生体系较难建立,一定程度上制约了转基因技术在大白菜育种中的应用。进入20世纪80年代之后,大白菜组织培养与高频植株再生体系逐步建立,在此基础上进行的转基因研究也取得了一定突破。
杨广东等(2002)以大白菜3d苗龄带柄子叶为外植体,经根癌农杆菌介导,将修饰的豇豆胰蛋白酶抑制基因(sck)导入大白菜自交系GP-11和杂交种中白4号,并获得了卡那霉素抗性植株。PCR检测和Southern blot杂交证实,sck基因已整合进入大白菜基因组中。豇豆胰蛋白酶抑制剂活性检测表明,大部分转基因植株都对牛胰蛋白酶有一定的抑制活性,对照未转化植株抑制活性很低。室内离体叶片饲虫和田间自然抗虫性鉴定进一步证明:转基因植株对菜青虫(Pieris rapae L.)具有一定的抗性。
朱常像等(2001)以大白菜品种福山大包头的子叶柄为供试材料,对影响大白菜植株再生和基因转化频率的因素进行了研究。在此基础上,建立了大白菜高效再生体系和有效的基因转化体系,并将芜菁花叶病毒的CP基因导入大白菜中,获得转化植株。PCR检测和Southern杂交分析证明TuMV-CP基因已整合于大白菜的基因组中;Nothern杂交分析及ELISA检测表明TuMV-CP在转录和翻译水平上进行了有效表达。转基因植株T代的遗传分析表明,外源基因在转基因植株后代遵循3:1的分离规律。抗病性测定显示,转基因植株具有明显的抗病毒侵染能力。
刘公社等(1998)利用大白菜小孢子胚状体获得抗除草剂转基因植株。用大白菜小孢子培养获得的子叶期胚状体,经粉碎的玻璃碴摩擦后,与农杆菌共培养,在加筛选剂Basta的培养基上,再生出数株绿苗,自交留种后,对其后代进行的Basta抗性鉴定显示,抗性植株的基因组中各有一个bar基因插入点,对转化株的小孢子进行再培养,后代小孢子植株对Basta抗性的分离比显示此转基因为杂合体。