分享一篇多肽信号在胚胎与胚乳之间移动,调控胚胎角质层发育的文章。
在胚胎发育早期,胚胎中产生TWISTED SEED1(TWS1)小肽的前体,通过初生不连续角质层的空隙,扩散到胚乳中,由胚乳特异表达的ABNORMAL LEAF SHAPE1(ALE1)酶加工成活性肽,回到胚胎中,与胚胎特异表达的受体激酶GASSHO1/2(GSO1/2)识别,调控形成完整的胚胎角质层。
植物的角质层(The plant cuticle)是由疏水的脂质和蜡质分泌到表皮细胞的细胞壁外侧后形成的。
在拟南芥胚胎发育的早期,胚胎角质层是初生不连续的,到心形胚时期,胚胎表皮细胞外侧形成完整的角质层,将胚胎细胞与周围的胚乳细胞等隔开。
GASSHO1 (GSO1) 和GSO2 受体激酶在 胚胎 中表达,影响在胚胎发育过程中影响角质层的功能。 gso1 gso2 双突变体表型:对亲水性燃料的透性增强,50-80%的子叶融合。 转录因子ZHOUPI (ZOU) 和ABNORMAL LEAF SHAPE1 (ALE1)是两个胚乳特异的转录因子(endosperm specific proteins)。有研究表明 GSO1、GSO2与ZOU、ALE1在同一条通路上调控胚胎发育。
枯草杆菌蛋白酶(subtilase)在 胚乳 中表达,能够对肽前体进行加工,TWS1 前体和GASSHO 受体在 胚胎 中表达。TWS1在2016年被报道与角质层的沉积有关。
被子植物的种子可以划分为三个区间:合子胚、胚乳、种皮。 CASPARIAN STRIP INTEGRITY FACTORs (CIFs)是一种酪氨酸硫酸化多肽【个人注:酪氨酸硫酸化多肽需要进行翻译后修饰,该类多肽有:PSK\PSY\RGF,通过酪氨酸硫酸化转移酶 TPST 进行催化】, CIF1/2作为GSO1/2的配体 ,调控根内皮层中凯氏带的形成。那CIFs是否调控胚胎角质层的发育呢。作者沿着这条思路,构建遗传材料 cif1 cif2 cif3 cif4 ,并未观察到种子扭曲、高渗表型表型(fig. S1A)。
在2016年报道了TWS1调控胚胎角质层,这里作者重新敲除得到了 tws1 的突变体,与 gso1-1 gso2-1 种子扭曲、高渗表型一致,且不存在加性, 说明TWS1与GSO1/2在同一条通路上。
并且在 tws1 中胚胎角质层的发育也同样受损,更进一步暗示TWS1可能与GSO1/2共同调控胚胎角质层的发育。【可从上述表型,以及已有的报道中推测,因为GSO1/2的配体是与TWS1同属于硫酸化的肽】
【至此,本文通过TPST酶的突变表型,推测受该酶加工的某种肽调控该表型,于是首先猜到CIFs,但是四突没表型,于是猜测其他的,结合TWS1多肽的报道,重新敲除后确定TWS1表型。文章做到这里,一般的思路是往下验证TWS1与GSO1/2互作,共同调控表型,结束,比较常规,且同类家族的多肽CIFs与GSO1/2作为配体受体已经被报道过,新意有待提升。】 那么作者是如何往下进行思考的呢?
【前文提到的 ale1 表型,以及领域内的背景知识:ALE1与GSO1/2在同一条通路上调控胚胎角质层的发育,并且ALE1蛋白酶是在胚乳中特异表达,那如果能够阐明ALE1的加工对于TWS1的活性是必须的,那就与这几个基因的表达部位的特异性,以及细胞分区,精确调控相关,就很有意思了。】
接下来证明 TWS1能够被ALE1加工 ,在烟草体内,和体外纯化中证明TWS1被ALE1加工切割,并进一步细化到切割位点位于His 54 和 Gly 55 。将TWS1的这两个氨基酸突变后,TWS1将不能被ALE1切割,说明这两个氨基酸残基对于TWS1的剪切位点非常关键。并且依赖于ALE1的加工发生在TWS1的C端。【后面的几句没太懂,个人理解是,TWS1和CIFs的氨基酸序列比较来看,由于CIFs位置更靠C端,TWS1没那么靠近C端,所以TWS1的C端需要ALE1进行加工来激活TWS1的活性。】这或许可以解释同类硫酸化多肽在种子和根中发挥不同功能。
通过以上三类实验,证明了: 1、TWS1被ALE1加工 2、TWS1与GSO互作 3、N端硫酸化至关重要 4、C端ALE1切割至关重要
tpst 纯合突变体用野生型花粉进行授粉后,没有胚胎表型,在F1代中只有tpst x tpst展示出表型,说明该表型是 合子起源【?】。
TPST在种子中遍在表达,为了探索哪一个区室的TPST对TWS1产生影响,于是分别用遍在启动子 RPS5A 、胚胎特异启动子 PIN1 、胚乳特异启动子 RGP3 驱动TPST的表达。结果: RPS5A 、 PIN1 下均能回补,只有 RGP3 驱动下,不能回补,这暗示 TPST对TWS1的加工在胚胎中发生 。
并且TWS1的定位分析显示:TWS1在胚胎初期开始在整个胚胎区域表达,随后,被限制在root tip【表达pattern同样暗示了:这种前后期表达的差异非常重要】。
【 那么TWS1作为信号肽在胚胎中产生,在胚胎中用TPST进行N端硫酸化加工,为什么还需要跑到胚乳中用ALE1进行C端加工,然后再跑回胚胎中与受体GSO结合,调控胚胎角质层完整性的沉积?这样穿梭的意义,或者需要在特定细胞分区之间加工的意义是什么呢? 】 作者在 tws1 背景下转入 pTWS1:ALE1 ,得到胚胎特异表达的ALE1,然后通过杂交引入TWS1,这样得到均在胚胎中表达的TWS1、ALE1以及GSO【为什么要在 tws1 背景下】。该类种子成熟时严重枯萎,但仍有部分可以发芽,说明胚胎中所有信号持续共表达会对种子发育产生负面影响,胚胎信号的持续激活,引起种子的应激基因上调。这就为上一个问题提出了解释:空间的分区或许提供了 胚胎信号衰减 的条件。
以上两部分说明了:TWS1信号若在从产生到加工一直在胚胎中,即胚胎信号在胚胎中持续共表达,会引起种子应激,对种子发育有害。在胚乳中进行的加工,具有对胚胎发育/角质层沉积的调节作用。
综上,作者提出,TWS1在胚胎产生,胚乳加工,再返回胚胎发挥功能,这样的双向信号传导模式能够有效地监察胚胎角质层的完整性。具体为:
参考文献
1. 2. 3. 4. 5.
通讯lab