极端异常值或自变量间严重的多重共线性问题。1、非随机性:预测变量的非随机性,即他们的取值是固定的,在生产环境中显然这种假定不满足。此时模型的理论结果仍然成立,但对结果的解释必须修改,当预测变量是随机变量时,所有推断都是关于观测数据的条件推断。2、取值没有随机误差:这个假定几乎是不能满足的,测量误差的存在会降低预测的精度,影响误差的方差,负相关系数以及单个回归系数的估计。非随机性假设与取值没有随机误差的假设无法验证其合理性,所在在实际分析中,对此类假设不予关注和讨论,但他们的确会影响对回归结果的解释。3、预测变量间假定线性无关:该假定是为了保证最小二乘解的唯一性,若该假定不成立,称为共线性问题。多元回归,研究一个因变量、与两个或两个以上自变量的回归。亦称为多元线性回归,是反映一种现象或事物的数量依多种现象或事物的数量的变动而相应地变动的规律。建立多个变量之间线性或非线性数学模型数量关系式的统计方法。在处理测量数据时,经常要研究变量与变量之间的关系。变量之间的关系一般分为两种。一种是完全确定关系,即函数关系;一种是相关关系,即变量之间既存在着密切联系,但又不能由一个或多个变量的值求出另一个变量的值。例如,学生对于高等数学、概率与统计、普通物理的学习,会对统计物理的学习产生影响,它们虽然存在着密切的关系,但很难从前几门功课的学习成绩来精确地求出统计物理的学习成绩。但是,对于彼此联系比较紧密的变量,人们总希望建立一定的公式,以便变量之间互相推测。回归分析的任务就是用数学表达式来描述相关变量之间的关系。