勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。编辑本段研究历史 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。 1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”编辑本段证明过程 1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。 为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。” 在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。 1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。 1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。 事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。 1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。编辑本段证明方法 五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。 这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。 用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。 n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。 现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。 说明: 要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>2 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。参考资料:
费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。编辑本段研究历史 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。 1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”编辑本段证明过程 1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。 为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。” 在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。 1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。 1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。 事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。 1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。编辑本段证明方法 五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。 这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。 用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。 n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。 现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。 说明: 要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>2 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。
数学定理列表(按字母顺序排列) 阿贝尔-鲁菲尼定理 阿蒂亚-辛格指标定理 阿贝尔定理 安达尔定理 阿贝尔二项式定理 阿贝尔曲线定理 艾森斯坦定理 奥尔定理 阿基米德中点定理 波尔查诺-魏尔施特拉斯定理 巴拿赫-塔斯基悖论 伯特兰-切比雪夫定理 贝亚蒂定理 贝叶斯定理 博特周期性定理 闭图像定理 伯恩斯坦定理 不动点定理 布列安桑定理 布朗定理 贝祖定理 博苏克-乌拉姆定理 垂径定理 陈氏定理 采样定理 迪尼定理 等周定理 代数基本定理 多项式余数定理 大数定律 狄利克雷定理 棣美弗定理 棣美弗-拉普拉斯定理 笛卡儿定理 多项式定理 笛沙格定理 二项式定理 富比尼定理 范德瓦尔登定理 费马大定理 法图引理 费马平方和定理 法伊特-汤普森定理 弗罗贝尼乌斯定理 费马小定理 凡·奥贝尔定理 芬斯勒-哈德维格尔定理 反函数定理 费马多边形数定理 格林公式 鸽巢原理 吉洪诺夫定理 高斯-马尔可夫定理 谷山-志村定理 哥德尔完备性定理 惯性定理 哥德尔不完备定理 广义正交定理 古尔丁定理 高斯散度定理 古斯塔夫森定理 共轭复根定理 高斯-卢卡斯定理 哥德巴赫-欧拉定理 勾股定理 格尔丰德-施奈德定理 赫尔不兰特定理 黑林格-特普利茨定理 华勒斯-波埃伊-格维也纳定理 霍普夫-里诺定理 海涅-波莱尔定理 亥姆霍兹定理 赫尔德定理 蝴蝶定理 绝妙定理 介值定理 积分第一中值定理 紧致性定理 积分第二中值定理 夹挤定理 卷积定理 极值定理 基尔霍夫定理 角平分线定理 柯西定理 克莱尼不动点定理 康托尔定理 柯西中值定理 可靠性定理 克莱姆法则 柯西-利普希茨定理 戡根定理 康托尔-伯恩斯坦-施罗德定理 凯莱-哈密顿定理 克纳斯特-塔斯基定理 卡迈克尔定理 柯西积分定理 克罗内克尔定理 克罗内克尔-韦伯定理 卡诺定理 零一律 卢辛定理 勒贝格控制收敛定理 勒文海姆-斯科伦定理 罗尔定理 拉格朗日定理 (群论) 拉格朗日中值定理 拉姆齐定理 拉克斯-米尔格拉姆定理 黎曼映射定理 吕利耶定理 勒让德定理 拉格朗日定理 (数论) 勒贝格微分定理 雷维收敛定理 刘维尔定理 六指数定理 黎曼级数定理 林德曼-魏尔斯特拉斯定理 毛球定理 莫雷角三分线定理 迈尔斯定理 米迪定理 Myhill-Nerode定理 马勒定理 闵可夫斯基定理 莫尔-马歇罗尼定理 密克定理 梅涅劳斯定理 莫雷拉定理 纳什嵌入定理 拿破仑定理 欧拉定理 (数论) 欧拉旋转定理 欧几里德定理 欧拉定理 (几何学) 庞加莱-霍普夫定理 皮克定理 谱定理 婆罗摩笈多定理 帕斯卡定理 帕普斯定理 普罗斯定理 皮卡定理 切消定理 齐肯多夫定理 曲线基本定理 四色定理 算术基本定理 斯坦纳-雷姆斯定理 四顶点定理 四平方和定理 斯托克斯定理 素数定理 斯托尔兹-切萨罗定理 Stone布尔代数表示定理 Sun-Ni定理 斯图尔特定理 塞瓦定理 射影定理 泰勒斯定理 同构基本定理 泰勒中值定理 泰勒公式 Turán定理 泰博定理 图厄定理 托勒密定理 Wolstenholme定理 无限猴子定理 威尔逊定理 魏尔施特拉斯逼近定理 微积分基本定理 韦达定理 维维亚尼定理 五色定理 韦伯定理 西罗定理 西姆松定理 西尔维斯特-加莱定理 线性代数基本定理 线性同余定理 有噪信道编码定理 有限简单群分类 演绎定理 圆幂定理 友谊定理 因式定理 隐函数定理 有理根定理 余弦定理 中国剩余定理 证明所有素数的倒数之和发散 秩-零度定理 祖暅原理 中心极限定理 中值定理 詹姆斯定理 最大流最小割定理 主轴定理 中线定理 正切定理 正弦定理阿尔贝—鲁菲尼 19世纪之前的300年间,数学家们一直为证明一元四次以上的方程是否有解而忙碌着,可惜他们不是望而却步,就是半途而废,没有一位能揭开这个结。1818年,挪威一位阿尔贝,在研究了前人的有关这一问题的大量资料后,坚定地对他的老师说:“让我来解答这一历史难题吧,我能证明四次以上的方程是否有解。”他凭着自信,聪明和勤奋,花了六年的时间,给了历史一个圆满的回答:一般高于四次的方程没有代数解。这就是著名的阿尔贝—鲁菲尼定理。 1824年,阿贝尔证明了五次或五次以上的代数方程没有一般的用根式求解的公式.该证明写进了“论代数方所谓方程有根式解(代数可解),就是这个方程的解可由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来.关于代数方程的求解,从16世纪前半叶起,已成为代数学的首要问题,一般的三次和四次方程解法被意大利的几位数学家解决.在以后的几百年里,代数学家们主要致力于求解五次乃至更高次数的方程,但是一直没有成功.对于方程论,拉格朗日比较系统地研究了方程根的性质(1770),正确指出方程根的排列与置换理论是解代数方程的关键所在,从而实现了代数思维方式的转变.尽管拉格朗日没能彻底解决高次方程的求解问题,但是他的思维方法却给后人以启示.P.鲁菲尼(Ruffini)于1799年首次证明了高于四次的一般方程的不可解性,但其“证明”存有缺陷.两年以后,高斯解决了分圆方程的可解性理论问题.拉格朗日和高斯的工作是阿贝尔研究工作的出发点.中学时,他就读过拉格朗日关于方程论的著作;大学一年级开始全面研究高斯的《算术研究》(Disquis-tiones arithmeticae).后来,他又了解了柯西关于置换理论方面的成果.然而,他当时并不晓得鲁菲尼的工作.阿贝尔就是在这种背景下思考代数方程可解性理论问题的. 1824年,阿贝尔首次作出了一般的五次方程用根式不可解的正确证明.更详细的证明,于1826年发表在克雷尔杂志第一期上.题目为“高于四次的一般方程的代数解法不可能性的证明”.在这篇论文中,阿贝尔讨论并修正了鲁菲尼论证中的缺陷.鲁菲尼的“证明”缺乏域的概念,所以不可能在由已知方程的系数所确定的基础域及域的扩张下进行工作.另外,鲁菲尼“证明”中还用到了一个未加证明的关键性命题,后称阿贝尔定理.该定理说,如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数.阿贝尔就是应用这个定理证明高于四次的一般方程不能有根式解的. 上面所说的阿贝尔定理,也就是“置换群”的思想。 他在进一步思考哪些方程(比如x^n-1=0)才可用根式解的问题的时候,阿贝尔证明了下述定理:对于一个任意次的方程,如果方程所有的根都可用其中的一个根有理地表出(我们用x表示),并且任意两个根Q(x)与Q1(x)(这里Q,Q1均为有理函数),满足关系QQ1(x)=Q1Q(x),那么所考虑的方程总是代数可解的.或者说,根xi=Q1(Xi),Q2(Xi),…,Qn(Xi)是根x1,x2,…,xn的一个置换.方程根进行这样置换的个数是n.阿贝尔考虑并证明了这些置换的性质,这就是“置换群”。 阿贝尔遗作中有一篇值得深入研究的未完成的手稿,即“关于函数的代数解法”(Sur la résolution algébrique des fonctions,1839).文中叙述了方程论的发展状况,重新讨论了特殊方程可解性的问题,为后来E·伽罗瓦(Galois)遗作的出版开辟了道路.在前言部分,阿贝尔暗示出一种重要的思维方法,他认为解方程之前,应首先证明其解的存在性,这样可使整个过程避免“计算的复杂性”.在代数方程可解性理论研究中,他还提出了一个研究纲领,就是在他的工作中需要解决两类问题:一是构造任意次数的代数可解的方程;二是判定已知方程是否可用根式求解.他试图全部刻画可用根式求解的方程的特性.但因早逝而没能完成这个工作,他只解决了第一类问题.几年后,伽罗瓦接过他的工作,用群的方法彻底解决了代数方程的可解性理论问题,从而建立了现在所谓的伽罗瓦理论.其余的你可以在网上搜索一下。不罗列了。
初中几何中有关辅助线的作法漫谈 初中数学中最难,也是最灵活的部分当属几何了. 因为初中阶段几乎把欧氏平面几何的所有内容都学完了,.内容之多,涵盖范围之广,都足以使其扑朔迷离,莫测高深.作辅助线是解决许多几何题的关键,大多初学者都对此感到迷惘,不知所错,久而久之,便产生了畏惧感和厌烦感.其实,就算是一位经验丰富的老师,拿到一道新题时,也未必能马上解答出来.所以初学者对此不必要有太大的心理压力. 记住,只要付出就会有回报. 现在有一种说法说作几何题需要一种感觉,叫做几何感觉,辅助线为什么要这样作,而非那样作? 说不上来,因为凭的就是感觉吗. 我不反对几何感觉的提法,但如果以此作为说不出理由的借口,就有点过分了.每位出题者出每一道题都有他的想法和意图.怎能说没有理由呢,何况每种辅助线的作法都非凭空而来的. 因此,我建议每一位初学者在作几何题是,都认真想一想,猜测一下出题者的意图,当然,感觉是有的,但不是生来就有,而是用汗水换来的. 那些凭感觉就能作出几何题来的人,我相信他一定付出不少,但我认为他还可以作的更好,如果在作每一道题时,再多思考一点的话. 似乎扯得太远了,还是讲讲几点作辅助线的技巧吧,不过,在此之前,我得提醒几句,任何技巧和方法都离不开知识,如果没有强大的基础知识作后盾,一切都将是纸上谈兵。所以,可以说,把书本上的每一条定理学懂 吃透,是一切关键之关键,你作到了没有? 如果没有,请马上找一本新笔记本,把书上的定理从头自尾,每天试着证两条,不看书上的证明,自己想方法,把过程详尽写出来,并在每条定理后面附两道相关练习题(可以找参考资料),坚持下去,到最后,我相信你也能找到所谓的几何感觉的。 先看几个例子,1. 如图,四边形ABCD为矩形,BF⊥DE于F 求证:AF⊥FC解析:题设十分简单,求正虚无飘渺。观察,观察,再观察,欲证 AF⊥FC,其实就是证三角形AFC是直角三角形,再考虑到矩形对角线相等且平分,四个角是直角。故而应该能想到如何做辅助线了吧。如果还没有头绪的话,再看看,这么多的线段相等(矩形中)似乎暗示我们利用直角三角形斜边上的中线等于斜边的一半,自此,问题已经明朗了。证明:连接AC,BD,FO因为BO=OD,所以FO为直角三角形BFD斜边上的中线,所以FO=BO=OD=1/2BD,又AC=BD,AO=OC,所以,FO=1/2AC,故在三角形AFC中有AC边上的中线FO等于AC的一半,所以由此得角AFC=90度。即AF垂直FC证明完毕,回头一看,过程多么简洁,多么明了,全赖辅助的功劳.本题如用其他方法似乎不太好解。故做好,做对辅助线往往是解题的关键,甚至可以说:辅助先做对了题目一做了一半。希望同学们漫漫体会! 2 如图二正方形ABCD中,AC ,BD交于O点,FA平分角BAC,交DB于E,交BC于F,求证:OE=1/2FC. 解析: 这是一道老题,但却是培养能力的一道题。做辅助线也成了关键。如何做了,仔细思考一下,若能找出一条线段,它既是FC的一半,又等于OE,不就行了吗,很明显要找一条等于FC的一半的线段,只要过O做OH//FC交AF于H,OH显然是三角形AFC的中位线,故有OF=1/2FC,OF即要找的线段,下面只要证OH=OE就可以了,这个问题并不难。本题的辅助线作法比上题要简单,一眼就应该看出来,除非你不知道中位线定理,所以说先有知识后有技巧。也就是经常强调同学们要把基本功打牢的意思了。证明:过O作OH//FC交AF于H,易知,OH是三角形AFC的中位线,∴OH=1/2FC又∠OHE=∠EFB=∠ACF+∠FAC=45°+∠FAB=∠ABD+∠FAB=∠BEF=∠OEH∴OH=OE∴OH=1/2FC.本题证明过程一环扣一环,整个证明过程如顺水行舟,一气呵成。本题的辅助线还有其他作法,你能想出来吗?3如图三,在三角形ABC中(AB>AC)边AB上取一点D,在AC上取一点E,使得AD=AE,直线DE和BC的延长线交于点P.求证:BP:CP=BD:CE, 解析:考虑到本题求证的是线段成比例,就应想到相似形和平行线,本题作平行线是显而易见的。过C点作CM//AB交PD于M,有BP/CP=BD/CM,AE/CE=AD/CM,而AD=AE,CM=CE,故BP/CP=BD/CE,本题作辅助线的办法很多,每一种作法都是一种方法。如过B点作BM//DP,,交AC延长线于M,或过B作BM//CA,交PD延长线于M,同学们不妨试一试,但不管辅助线如何做,一定要抓住BP/CP这样才凑效。通过以上几题,简单的向同学们讲了作辅助线的一些具体办法,但限于篇幅,不能一一例出。辅助线的做法是灵活的,需要同学们具体问题具体分析,对不同的题目要有不同的想法,我只能给同学们一些基本的东西,那就是作辅助线的思想,只要肯勤动脑,再难的题都有办法。最后一道例题:3如图三,在三角形ABC中(AB>AC)边AB上取一点D,在AC上取一点E,使得AD=AE,直线DE和BC的延长线交于点P.求证:BP:CP=BD:CE, 解析:考虑到本题求证的是线段成比例,就应想到相似形和平行线,本题作平行线是显而易见的。过C点作CM//AB交PD于M,有BP/CP=BD/CM,AE/CE=AD/CM,而AD=AE,CM=CE,故BP/CP=BD/CE,本题作辅助线的办法很多,每一种作法都是一种方法。如过B点作BM//DP,,交AC延长线于M,或过B作BM//CA,交PD延长线于M,同学们不妨试一试,但不管辅助线如何做,一定要抓住BP/CP这样才凑效
新课程标准提倡利用信息技术来呈现以往教学中难以呈现的教学内容,实现信息技术与数学的有机整合。这种做法就是将信息技术融合到数学课程中,在内容上“把算法融入到数学课程的各个相关部分”,这就使得信息技术实质性地成为数学课程教与学的必要工具,掌握信息技术已成为学好或教好数学课程的必要条件。教师利用电脑对图形、数字、动画乃至声音、背景等教学需要进行综合处理,使得易于理解和掌握,使学生能利用计算机提取资料、交互反馈、进行自学,让数学中的学习能力、探索能力、创新能力、解决问题的能力成为学生个性潜能发展的方向。信息技术在学科教学中的运用是新课程对我们提出的必然要求。如何看待信息技术,如何恰当地把它与学科教学整合在一起,通过运用多媒体教学从中获得许多有益的启示。一、信息技术具有直观性,能突破视觉的限制,多角度地观察对象,并能够突出要点,有助于概念的理解和方法的掌握在讲“平移和旋转”这节课时,本文作者设计了这样的一个问题:平移和旋转这两种运动方式除了在游乐场里出现过,其实在我们平时的生活中也有很多平移与旋转的现象。下面就请同学们结合自己的感受,联系生活实际,判断下面的画面哪些是平移运动、哪些是旋转运动?屏幕出现几种生活中的平移与旋转现象,(直梯升降、风车转动……)录像中播放情景都是学生们在日常生活中经常看到的,有汽车的行进,溜溜球在旋转,风车在转动,推拉窗的移动,电梯的移动等。这些情景都是学生们生活中再熟悉不过的了,可能平时他们并没有在意这些现象,更不会想到这些现象能和我们今天的数学知识联系起来,通过这段影像的播放便加深了他们对这两种运动方式的认识。接着教师提问“谁还能来说一说你在生活中曾见到过哪些平移与旋转的现象?由于有了前面屏幕上展示的平移或旋转的实际录像,学生们说出了很多生活中出现这两种运动方式的现象。二、信息技术具有图文并茂性,能多角度调动学生的情绪、注意力和兴趣例如在教学《垂径定理》这一节时,课本中对垂径定理的证明学生根本不理解,于是我制作了一个FLASH动画,按课本中的证明过程进行动画演示以后,很多学生就能尝试着进行证明,与课本中的证明过程几乎差不多。利用多媒体计算机的快速绘图、动画、视频、发声等功能,可以快速模拟某些发明、发现的过程,使传统教学难以实现的“发现法”教学可能经常实施。例如在教学《位似》这一节时,我用几何画板制作一个课件,画出两个位似图形,在我的引导下,利用软件的测量功能让学生很快就将对应边、对应角、对应顶点到位似中心的距离之间的关系等自己找出来了,再通过调整任一顶点或位似中心的位置观察图形的变化,学生对这一内容都有了更深的理解。因为这一节不比其他章节,其图形不是想画就能随便画出一个来,要花费一定的时间,常规模式的教学效果是一定好不起来的。三、 信息技术具有动态性,能有效地突破教学难点,有利于反映概念及过程例如:在教学九年级《抛物线》一课时,学生对抛物线的认知就是一条光滑的曲线,但我们利用多媒体播放火箭队和湖人队的一场比赛,展示出篮球运动员姚明投篮时篮球的运动轨迹,学生就会对抛物线有更直观的认识。由于用电脑演示,手段新颖,学生的注意力集中,给学生留下深刻的印象,教学效果明显。四、 信息技术具有交互性,能让学生有更多的参与,学习更为主动,并通过创造反思的环境,有利于学生形成新的认知结构大家知道,在传统的教学过程中一切都是由教师决定。从教学内容、教学策略、教学方法、教学步骤甚至学生做的练习都是教师事先安排好的,学生只能被动地参与这个过程,即处于被灌输的状态。而在多媒体计算机这样的交互式学习环境中学生则可以按照自己的学习基础、学习兴趣来选择自己所要学习的内容,可以选择适合自己水平的练习,如果教学软件编得更好,连教学模式也可以选择,。例如,平行线等分线段定理是平面几何中的一个重要知识点,是全等三角形、平行四边形、梯形等知识点的延伸,同时又是学习平行线截线段成比例的基础。正确理解平行线等分线段定理是教学关键,学会尺规等分已知线段也是本节的重点。教材中直接给出定理内容及证明方法,如若采用传统教学方法讲解,机械的步骤和静止的图形给学生以枯燥、乏味的感觉,并且只能向学生展示知识的结论,不便于揭示问题探索的过程。这样使学生对平行线等分线段定理只知其然不知其所以然,在学生知识的认知结构中出现断层,不利于能力的培养。为了使学生参与问题的探索过程,正确理解平行线分线段成比例定理,结合这节教材的具体内容,我利用《几何画板》制作了课件,利用课件的测算、动画、隐藏等功能,加强学生的感性认识,引导学生参与问题的探索,培养学生分析问题的能力,让学生在电脑上亲自去度量线段的长,计算线段的比,然后验证线段的比是否相等,这样做,教学中发现了“定理”。另外,通过平行移动图中线段的位置,学生很容易“发现”该定理的两个推论,即它的两个变示图形。这样的教学方法设计,突出了学生的主体地位和探索观察的实验意识,从一般到特殊,从形象到抽象,学生经过这样一番试验、观察、猜想、证实之后,再引导学生给出证明,这样较难讲清的问题,就在学生的试验中解决了。五、信息技术具有补充性,能通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力譬如,在上中位线性质时,可用《几何画板》设计如下课件让学生实验.画一个可以任意调节的四边形ABCD,顺次连接四边形的中点得到一个内接四边形EFGH。实验:(1)任意拖动四边形ABCD,观察内接四边形是什么图形(平行四边形);(2)当四边形ABCD为矩形时,观察内接四边形是什么图形(菱形);(3)当四边形ABCD为菱形时,观察内接四边形是什么图形(矩形);(4) 调节四边形ABCD使其对角线相等,观察内接四边形是什么图形(菱形);(5)调节四边形ABCD使其对角线互相垂直时,观察内接四边形是什么图形(长方形);(6)调节四边形ABCD使其对角线互相垂直且相等时,观察内接四边形是什么图形(正方形)。学生在教师的指导下,通过上述实验,大胆猜想并加以证明,最后得出结论。应用《几何画板》的动态展示,便能把一个难以讲清楚的问题,让学生在实验中解决了.六、信息技术具有大容量性,能节约空间和时间,提高了教学效率当教师的都有这样的经历:为节省上课板书时间,课前准备了大量纸条,把板书内容逐条写上;为增加课堂练习量,把各式习题都抄在小黑板上。其弊端是给教师加大了工作量,若遇到天气不好坐在后排的学生看不清黑板上的字,影响教学效果。如“数据与图表复习课”中有关统计表、统计图设计的题目,可以利用多媒体的信息量大。使学生信息量不足,接受起来比较困难。CAI介入课堂教学较好的解决了这一难题。由于多媒体技术“动”性强,因而传递信息量大、速度快,再加上交互性强,使高密度、大容量的训练和信息交流成为可能。这样,教师可以精心组织课堂中学生的学习活动,优化了教师的教,也优化了学生的学。姚明投篮时篮球的运动轨迹,学生就会对抛物线有更直观的认识。由于用电脑演示,手段新颖,学生的注意力集中,给学生留下深刻的印象,教学效果明显。
349 浏览 7 回答
301 浏览 4 回答
163 浏览 4 回答
292 浏览 11 回答
324 浏览 7 回答
141 浏览 5 回答
166 浏览 6 回答
234 浏览 9 回答
191 浏览 6 回答
126 浏览 6 回答
304 浏览 2 回答
279 浏览 5 回答
192 浏览 3 回答
95 浏览 6 回答
257 浏览 4 回答