勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。编辑本段研究历史 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。 1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”编辑本段证明过程 1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。 为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。” 在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。 1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。 1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。 事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。 1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。编辑本段证明方法 五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。 这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。 用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。 n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。 现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。 说明: 要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>2 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。参考资料:
费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。编辑本段研究历史 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。 1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”编辑本段证明过程 1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。 为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。” 在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。 1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。 1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。 事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。 1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。编辑本段证明方法 五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。 这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。 用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。 n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。 现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。 说明: 要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>2 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。
数学定理列表(按字母顺序排列) 阿贝尔-鲁菲尼定理 阿蒂亚-辛格指标定理 阿贝尔定理 安达尔定理 阿贝尔二项式定理 阿贝尔曲线定理 艾森斯坦定理 奥尔定理 阿基米德中点定理 波尔查诺-魏尔施特拉斯定理 巴拿赫-塔斯基悖论 伯特兰-切比雪夫定理 贝亚蒂定理 贝叶斯定理 博特周期性定理 闭图像定理 伯恩斯坦定理 不动点定理 布列安桑定理 布朗定理 贝祖定理 博苏克-乌拉姆定理 垂径定理 陈氏定理 采样定理 迪尼定理 等周定理 代数基本定理 多项式余数定理 大数定律 狄利克雷定理 棣美弗定理 棣美弗-拉普拉斯定理 笛卡儿定理 多项式定理 笛沙格定理 二项式定理 富比尼定理 范德瓦尔登定理 费马大定理 法图引理 费马平方和定理 法伊特-汤普森定理 弗罗贝尼乌斯定理 费马小定理 凡·奥贝尔定理 芬斯勒-哈德维格尔定理 反函数定理 费马多边形数定理 格林公式 鸽巢原理 吉洪诺夫定理 高斯-马尔可夫定理 谷山-志村定理 哥德尔完备性定理 惯性定理 哥德尔不完备定理 广义正交定理 古尔丁定理 高斯散度定理 古斯塔夫森定理 共轭复根定理 高斯-卢卡斯定理 哥德巴赫-欧拉定理 勾股定理 格尔丰德-施奈德定理 赫尔不兰特定理 黑林格-特普利茨定理 华勒斯-波埃伊-格维也纳定理 霍普夫-里诺定理 海涅-波莱尔定理 亥姆霍兹定理 赫尔德定理 蝴蝶定理 绝妙定理 介值定理 积分第一中值定理 紧致性定理 积分第二中值定理 夹挤定理 卷积定理 极值定理 基尔霍夫定理 角平分线定理 柯西定理 克莱尼不动点定理 康托尔定理 柯西中值定理 可靠性定理 克莱姆法则 柯西-利普希茨定理 戡根定理 康托尔-伯恩斯坦-施罗德定理 凯莱-哈密顿定理 克纳斯特-塔斯基定理 卡迈克尔定理 柯西积分定理 克罗内克尔定理 克罗内克尔-韦伯定理 卡诺定理 零一律 卢辛定理 勒贝格控制收敛定理 勒文海姆-斯科伦定理 罗尔定理 拉格朗日定理 (群论) 拉格朗日中值定理 拉姆齐定理 拉克斯-米尔格拉姆定理 黎曼映射定理 吕利耶定理 勒让德定理 拉格朗日定理 (数论) 勒贝格微分定理 雷维收敛定理 刘维尔定理 六指数定理 黎曼级数定理 林德曼-魏尔斯特拉斯定理 毛球定理 莫雷角三分线定理 迈尔斯定理 米迪定理 Myhill-Nerode定理 马勒定理 闵可夫斯基定理 莫尔-马歇罗尼定理 密克定理 梅涅劳斯定理 莫雷拉定理 纳什嵌入定理 拿破仑定理 欧拉定理 (数论) 欧拉旋转定理 欧几里德定理 欧拉定理 (几何学) 庞加莱-霍普夫定理 皮克定理 谱定理 婆罗摩笈多定理 帕斯卡定理 帕普斯定理 普罗斯定理 皮卡定理 切消定理 齐肯多夫定理 曲线基本定理 四色定理 算术基本定理 斯坦纳-雷姆斯定理 四顶点定理 四平方和定理 斯托克斯定理 素数定理 斯托尔兹-切萨罗定理 Stone布尔代数表示定理 Sun-Ni定理 斯图尔特定理 塞瓦定理 射影定理 泰勒斯定理 同构基本定理 泰勒中值定理 泰勒公式 Turán定理 泰博定理 图厄定理 托勒密定理 Wolstenholme定理 无限猴子定理 威尔逊定理 魏尔施特拉斯逼近定理 微积分基本定理 韦达定理 维维亚尼定理 五色定理 韦伯定理 西罗定理 西姆松定理 西尔维斯特-加莱定理 线性代数基本定理 线性同余定理 有噪信道编码定理 有限简单群分类 演绎定理 圆幂定理 友谊定理 因式定理 隐函数定理 有理根定理 余弦定理 中国剩余定理 证明所有素数的倒数之和发散 秩-零度定理 祖暅原理 中心极限定理 中值定理 詹姆斯定理 最大流最小割定理 主轴定理 中线定理 正切定理 正弦定理阿尔贝—鲁菲尼 19世纪之前的300年间,数学家们一直为证明一元四次以上的方程是否有解而忙碌着,可惜他们不是望而却步,就是半途而废,没有一位能揭开这个结。1818年,挪威一位阿尔贝,在研究了前人的有关这一问题的大量资料后,坚定地对他的老师说:“让我来解答这一历史难题吧,我能证明四次以上的方程是否有解。”他凭着自信,聪明和勤奋,花了六年的时间,给了历史一个圆满的回答:一般高于四次的方程没有代数解。这就是著名的阿尔贝—鲁菲尼定理。 1824年,阿贝尔证明了五次或五次以上的代数方程没有一般的用根式求解的公式.该证明写进了“论代数方所谓方程有根式解(代数可解),就是这个方程的解可由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来.关于代数方程的求解,从16世纪前半叶起,已成为代数学的首要问题,一般的三次和四次方程解法被意大利的几位数学家解决.在以后的几百年里,代数学家们主要致力于求解五次乃至更高次数的方程,但是一直没有成功.对于方程论,拉格朗日比较系统地研究了方程根的性质(1770),正确指出方程根的排列与置换理论是解代数方程的关键所在,从而实现了代数思维方式的转变.尽管拉格朗日没能彻底解决高次方程的求解问题,但是他的思维方法却给后人以启示.P.鲁菲尼(Ruffini)于1799年首次证明了高于四次的一般方程的不可解性,但其“证明”存有缺陷.两年以后,高斯解决了分圆方程的可解性理论问题.拉格朗日和高斯的工作是阿贝尔研究工作的出发点.中学时,他就读过拉格朗日关于方程论的著作;大学一年级开始全面研究高斯的《算术研究》(Disquis-tiones arithmeticae).后来,他又了解了柯西关于置换理论方面的成果.然而,他当时并不晓得鲁菲尼的工作.阿贝尔就是在这种背景下思考代数方程可解性理论问题的. 1824年,阿贝尔首次作出了一般的五次方程用根式不可解的正确证明.更详细的证明,于1826年发表在克雷尔杂志第一期上.题目为“高于四次的一般方程的代数解法不可能性的证明”.在这篇论文中,阿贝尔讨论并修正了鲁菲尼论证中的缺陷.鲁菲尼的“证明”缺乏域的概念,所以不可能在由已知方程的系数所确定的基础域及域的扩张下进行工作.另外,鲁菲尼“证明”中还用到了一个未加证明的关键性命题,后称阿贝尔定理.该定理说,如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数.阿贝尔就是应用这个定理证明高于四次的一般方程不能有根式解的. 上面所说的阿贝尔定理,也就是“置换群”的思想。 他在进一步思考哪些方程(比如x^n-1=0)才可用根式解的问题的时候,阿贝尔证明了下述定理:对于一个任意次的方程,如果方程所有的根都可用其中的一个根有理地表出(我们用x表示),并且任意两个根Q(x)与Q1(x)(这里Q,Q1均为有理函数),满足关系QQ1(x)=Q1Q(x),那么所考虑的方程总是代数可解的.或者说,根xi=Q1(Xi),Q2(Xi),…,Qn(Xi)是根x1,x2,…,xn的一个置换.方程根进行这样置换的个数是n.阿贝尔考虑并证明了这些置换的性质,这就是“置换群”。 阿贝尔遗作中有一篇值得深入研究的未完成的手稿,即“关于函数的代数解法”(Sur la résolution algébrique des fonctions,1839).文中叙述了方程论的发展状况,重新讨论了特殊方程可解性的问题,为后来E·伽罗瓦(Galois)遗作的出版开辟了道路.在前言部分,阿贝尔暗示出一种重要的思维方法,他认为解方程之前,应首先证明其解的存在性,这样可使整个过程避免“计算的复杂性”.在代数方程可解性理论研究中,他还提出了一个研究纲领,就是在他的工作中需要解决两类问题:一是构造任意次数的代数可解的方程;二是判定已知方程是否可用根式求解.他试图全部刻画可用根式求解的方程的特性.但因早逝而没能完成这个工作,他只解决了第一类问题.几年后,伽罗瓦接过他的工作,用群的方法彻底解决了代数方程的可解性理论问题,从而建立了现在所谓的伽罗瓦理论.其余的你可以在网上搜索一下。不罗列了。
论文查重公众号繁多,以下为一些推荐,请根据个人需求进行选择:
1、笔杆网
点击首菜单,就可以看到获取检测码,检测码可以用于查重,检测码折扣不等。折扣码使用地址为:;折扣码每天每人可以领取两个。
2、PaperYY
搜索公众号“Paperyy论文查重”,点击公众号菜单,可以看到有安卓专用和ios专用 ,安卓专用是小程序,可以看到有好友助力免费领取查重机会,还有新人福利,免费使用,签到等活动。
3、爱学术
搜索公众号“爱学术”,点击菜单,可以看到有免费论文查重,还可以获得笔杆折扣码。这个公众号可以免费检索文献,输入要的文献标题就给你自动检索文章发,非常方便。
扩展资料:
论文查重经验
1、先搞清楚学校使用哪个检测系统,目前高校普遍采用知网,但也有高校使用万方、维普等其他检测系统。
2、询问导师或师兄师姐,学校关于论文重复率指标要求是多少,切实做到知己知彼,心中有数。
3、不能盲目乐观,认为论文就是自己写的,重复率肯定没问题,经常是你、想到的观点别人已经在之前的论文中表述过了,所以,重复率检测不能忽视。
4、如果重复率不达标,会成为一辈子的梦魇,很多人都是在毕业多年后被查出论文抄袭,降职级、丢工作,得不偿失。
5、论文中引用他人的文献一定要标注,既是对他人的尊重,也能体现严谨的学术态度。
6、重复率高了不代表论文水平低,同样,重复率为0的论文也不见得就是一篇优秀论文,洗稿、伪原创无处不在。
7、重复率检测尽可能在论文定稿之后进行,好论文都是改出来的,不能每修改一次就检测一次重复率。
网站故意设置的广告吧,多按几次试试
PaperTime是在“教育大数据联盟平台”的基础上,优先获取教育数据资源,采用多级指纹对比技术及深度语义识别技术,实现“实时查重、在线修改、同步降重”一步到位。新用户免费10000字查询。
可以试试学术不端论文查重系统,大学生版(专/本科毕业论文定稿)、研究生版(硕博毕业论文定稿)、期刊职称版(期刊投稿,职称评审)以上版本均可免费查重不限篇数。公众号上直接搜cnkitime论文查重就可以了。
安全呀,我们不都是登陆自己的账号查重,在检测完成之后,自己选择下载检测报告,报告只会保留7天时间,我们中途可以自己选择加密或者删除的。而且不仅是爱学术,任何一个查重网站都是不会将你提交的任何文件收录、添加到比对数据库,除非你自己将论文发布到了能被收录的期刊上。而且,一般收录的优秀毕业论文都是由导师提交到图书馆,再由图书馆统一整理后提交给查重系统。
当然有保障的,现在正规的论文查重软件都是有保障的,也不会收录所查文章,放心使用吧。
爱学术上面的论文,如果你想要查阅的话,每天只能下载几篇,是免费的。这里特别推荐百度学术,百度学术上面下载的论文是免费的。
爱学术论文查重遵守相关保密规定,全站使用HTTPS加密协议,文档上传阿里云OSS,支持自主删除,报告加密。绝不收录和泄露您送检文档的任何信息,可以放心检测
大学生发表论文两种途径:1、如果你不是很着急的话,可以自己投稿给杂志社。优点:很多人觉得这样放心些。缺点:审稿太慢,一般审稿期是3个月,作者才能知道文章能不能被录用,再算上出刊的时间,等作者拿到刊物,差不多要半年左右时间。2、找代理。优点:省心、省时。你不用自己去寻找刊物,一般做的好的代理,可以根据你稿子的内容,有针对性的给你推荐刊物,有的放矢。代理帮你转的稿子,审稿都很快,学生的稿子,审稿一般在3天内就可以知道结果了,出刊也比较及时。
首先,你需要写出像样的论文,文章肯定不能是炒冷饭的那种,需要有自己的创新点。所以在写文章之前,需要查阅大量的文献,以确保此前没人发过类似的文章。多看一些好文章,从中能够学到很多东西,比如一些观点或者写作方法。文章撰写完成之后,一定要反复修改,避免出现口语化的句子。如果是英文,还要注意语法,一定要按照英文惯用的表达方式来撰写文章。当文章经过反复修改之后,可以开始找期刊投稿。为了提高文章的接收率,找一个合适的期刊非常关键。所以一定要多看文章,这样才能知道自己写的文章大概在什么样的水平,然后选择相应档次的期刊进行投稿。中文期刊包括中文核心期刊、非核心期刊、学报,英文期刊包括SCI收录期刊、EI收录期刊,其中中文核心期刊和SCI收录期刊在中文和英文中是档次较高的期刊,也是很多人的投稿目标。此外,中科院把SCI收录期刊分为四区:一区、二区、三区和四区,档次和难度依次降低。在确定要投哪个期刊之后,按照该期刊的要求把论文的格式改好。然后,通过电子邮件把文章投出去。切忌,不要一稿多投!这样的做法只会降低你的信用,不利于以后的投稿,毕竟这个圈子不大。文章投出去之后,就是等待同行评审的结果。一般至少有两个审稿人评审同一篇文章,如果审稿人给出的意见都是修改(可能是大修或者小修),那么,只要按照要求修改好文章,最终一般都会被接收。如果其中有个审稿人给出的审稿意见是拒稿,那么文章就不会被接收。但你也可以根据审稿人的意见修改文章,然后再找一个更合适的期刊进行投稿。
1.首先是文章的写作。发表论文前首先要有写好的文章。2.对于期刊的选择。一般而言,各个单位评职称都有自己的明文规定,不要急于投稿发表,要先看看文件对期刊的要求,认可那些期刊,不认可那些期刊。鉴别期刊真伪,首先要到新闻出版总署网站查询其备案情况,然后再去一些数据库查询期刊的收录情况,例如:万方数据库,中国知网。3.论文发表途径。当然如果想一两个月或者更快的发表,可以寻找其他渠道,比如一些论文发表网,但是选择论文发表网要慎重,选择不好,不但花了钱,还耽误评职称。基本就是这些了,发表可以去百姓论文网。好多朋友都在那发过。他们都说不错。
一、直接过去投
一般来说,在本校地或者本地的杂志,可以直接过去投。因为这样方便登记,可以减少编辑从网上下载下来慢慢登记的过程。去登记的时候,带上三份稿件和电子版。
一份便于编辑送出去审稿,一份给编辑保留,一份问编辑哪些需要修改以此表示你投稿的诚意。电子版最好用U盘拷来,邮箱有一份,防止出现意外。
二、网投
网投,这是本科生怎么发表论文的第二种方式。如果是网投,记得不要仅仅发一篇文章给编辑,什么都不说。因为这样他们会觉得你搞学术都忘了礼貌了。还有就是因为每天编辑都会收到几十封甚至几百封投稿邮件。编辑如果不把你的文章下载下来,你的文章就会石沉大海。
之前邮箱系统出现问题,也导致过几百封投稿都弄丢了。还要记得一定要留你的联系方式,手机,座机,QQ,地址,邮编,一切可能的联系方式。最后当编辑跟你联系后,一定要记得要记下他的联系方式,按照编辑的方式汇款,记得经常打电话询问你需要做什么样的修改。
立式钻削中心主轴系统结构设计 论文编号:JX472 有设计图,论文字数:19933,页数:64 有开题报告,任务书 摘要 随着数控技术的发展,传统的立式钻床、铣床等设备并不能满足高加工精度,高加工效率,高速加工的加工要求。为此,在传统的立式钻床、铣床与新型数控机床技术的基础上,开发了以钻削为主,并兼有攻丝、铣削等功能,且备有刀库并能够自动更换刀具来对工件进行多工序加工的数控机床—钻削中心。 本文主要针对钻削中心的主轴系统进行设计。在本设计中,主轴调速取消了齿轮变速机构,而是由交流电动机来调速;主轴与电机轴之间采用多楔带传动;主轴内部刀具的自动夹紧,则采用了碟形弹簧与气压传动技术;主轴的垂直进给采用了半闭环伺服进给系统;主轴的支承采用了适应高刚度要求的轴承配置。 总之,通过对主轴系统的设计,使系统满足了钻削中心高效、高加工精度的要求。 关键词 数控技术 钻削中心 主轴系统 Abstract With the development of NC technology, the traditional vertical drilling, milling machine and other equipment and can not meet the high precision machining, Processing high-efficiency, high-speed machining requirements. Therefore, in the traditional vertical drilling machine, CNC milling machine and new technology on the basis of developing a drilling mainly, and both tapping, milling, and other functions, With cutting tool can automatically replace the multi-process workpiece machining CNC machine tools – Drilling Center. This paper is concerned with the drilling spindle system design. In this design, the spindle speed of the complete elimination of the variable speed gear, and a fully by the AC motor is to be achieved. Wedge Belt Drive is used between spindle and motor shaft. Internal spindle automatic tool clamping, the use of a disc spring with pressure transmission technology;The vertical axis feed using a semi-closed-loop servo control system; The supporting of spindle uses high stiffness requirements of the bearing arrangement. In short, through the spindle system design, allowing the system to meet the drilling center efficient, high-precision processing of the request. Keywords NC technology Drilling Center spindle system 目录 摘要I Abstract II 第1章 绪论 1 数控技术发展状况及发展趋势 1 概述 1 数控技术国内外发展现状 2 数控系统的发展趋势 2 课题研究的目的与意义 5 设计方案的确定 6 第2章 钻削中心主轴部件结构设计 7 主轴的结构设计 7 主轴的基本尺寸参数的确定 7 主轴端部结构 8 主轴刀具自动夹紧机构 9 主轴的验算 11 主轴材料和热处理的选择 15 主轴传动的设计 16 传动方式的选择 16 多楔带带轮的设计计算 17 多楔带的选择及带轮尺寸参数的确定 19 传动件在主轴上的位置 20 主轴电动机的选择 21 主轴轴承 22 主轴轴承的选用 22 主轴轴承的配置 24 滚动轴承调整和预紧方法 24 主轴轴承的润滑 25 碟形弹簧的计算 27 钻削力分析 27 碟形弹簧设计计算 29 碟形弹簧的校核 31 气缸的设计计算 33 气缸的结构设计 33 气动回路的选择 37 第3章 主轴进给系统的设计 39 概述 39 伺服进给系统的组成 39 伺服进给系统的类型 39 进给系统设计计算 41 主要参数的设定 41 切削力的估算 41 滚珠丝杠副设计计算 42 丝杠的校核 45 选伺服系统和检测装置 47 伺服电机计算 47 结论49 致谢50 参考文献 51 附录1 52 附录2 57 以上回答来自:
看您做的材料是类型的,如果是高端材料建议用精密型的陶瓷三辊机,精度高最小辊距可调1微米,载体有无机粉体的话比较适合。如果材料要求不高,可以用粗诳型三辊机。
三辊研磨机维护保养主要分为以下特点,三辊研磨机在连续使用超过半年以后,争取可以进行一次彻底检查,出现故障的零件进行大修。将各个地方洗动的部分进行拆洗,然后重新换上干净的润滑油,仔细检查油路畅通的情况,在拆洗时发现问题一定要及时修复。在使用三辊研磨机时一旦发现辊筒变形,必须立即停止使用,并进行重新修磨。辊筒修磨次数过多,辊筒直径如果小于要求,会容易出现传动齿轮顶紧,辊筒相互之间留有缝隙的情况,此时齿轮必须及时进行修正。其实对于三辊研磨机的保养非常简单,在日常使用时也需多加注意。三辊研磨机注意事项一、注意事项:1、滚筒中部漆膜薄,两端厚,可能滚筒中凸,需调大冷却水量。2、滚筒两端漆膜薄,中间漆膜厚,需调小冷却水量。3.不开冷却水严禁开车。4.两辊中间严禁进入异物(如金属块等),如不慎进入异物,则紧急停车取出,否则会挤坏辊面或其他机件损坏。5.应随时注意调节前后辊,由于滚筒的线膨胀,一不小心,工作时容易胀死,甚至刹住电机产生意外。6.档料铜档板(档尖)不能压得太紧,随时加入润滑油(能溶入漆浆的),否则会很快磨损。7.注意辊筒两端轴承温度,一般不超过100。二、注意事项:1.操作三辊研磨机前首先检查电源线管,开关按钮是否正常,降温循环水是否有,如一切正常方可开机。2.操作中应注意是否有异常,应即刻停机。3.操作中应固定好储油桶,避免有油溢出。4.操作员应时刻注意辊筒上有否杂物,如有应即刻停机,以免影响品质和发生安全事故。5.有操作员要离开岗位时,应有人代岗。6.如生产完成要及时清洗辊筒和清理周围卫生,关闭相关电源开关。
机械毕业论文格式范例 第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。 (2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。 (3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。 (6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。 4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,倍行距。文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。 第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。 (2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。下空两行。 (4)内容提要及关键词 详细请参考: 我是中国机械加工网( )站长,很高兴为您解答问题。