2004年11月12日,英国《泰晤士报》首次刊登的数独,引起了人们的极大关注和兴趣,成为全球最疯狂的数字迷宫游戏,进而引发了一场声势浩大的“数独”热,在短短的数月间便蔓延至全球,成为人们非常喜爱的一种智力数字游戏。追根求源,数独源自18世纪80年代的瑞士数学家里昂哈德·欧拉(Leonhard Euler)的“拉丁方块”。20世纪80年代初,《趣味数独》作者就开始对“正交拉丁方”进行了系统的研究,前后发表了多篇研究论文。其中,于1990年12月在《数学季刊》上发表的“用正交拉丁方构造两次幻方”的研究论文,成为研究数独的理论基础,它不同于目前流行的一般数独,是一种独特新颖而奇妙的数独。这种数独是多条件的趣味数独,其特点是:除一般数独的每行、每列和每一个九宫格1~9不重复外,还具有两条对角线1~9不重复;4条折断对角线(6-3对角线)1~9不重复;通过中央格的直线两端数字对称互补(即任何两个对称数字之和为10);1个9格“王”、1个5格“王”和9个7格“王”(王字9点——三横的起点与终点及一竖与三横的3个交点共9点)1~9不重复等。这种多条件的数独不仅给解题提出了苛刻的条件,而且也充分体现了多条件数独设计的严格科学性,掌握了这些特点有助于读者迅速地解题。