浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横’‘直’”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。
中国古代数学的成就与衰落数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250()”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到<π<,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》[2卷]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷]是介绍西方三角学的著作。此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了。
宋元数学总结唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》(11世纪中叶),刘益的《议古根源》(12世纪中叶),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275,朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)高次方程数值解法;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)招差术和垛积术,即高次内插法和高阶等差级数求和。另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。百度文库里有的下载,建议多找几种版本,拼拼凑凑,一篇论文再加点润色,可以很棒的。
参考文献是毕业论文中的一个重要构成部分,它的引用是对论文进行引文统计和分析的重要信息来源。下文是我为大家搜集整理的关于数学论文参考文献的内容,欢迎大家阅读参考!数学论文参考文献(一) [1]李秉德,李定仁,《教学论》,人民教育出版社,1991。 [2]吴文侃,《比较教学论》,人民教育出版社,1999 [3]罗增儒,李文铭,《数学教学论》,陕西师范大学出版社,2003。 [4]张奠宙,李士 ,《数学教育学导论》高等教育出版社,2003。 [5]罗小伟,《中学数学教学论》,广西民族出版社,2000。 [6]徐斌艳,《数学教育展望》,华东师范大学出版社,2001。 [7]唐瑞芬,朱成杰,《数学教学理论选讲》,华东师范大学出版社,2001。 [8]李玉琪,《中学数学教学与实践研究》,高等教育出版社,2001。 [9]中华人民共和国教育部制订,《全日制义务教育数学课程标准(实验稿)》,北京:北京师范大出版社,2001. [10] 高中数学课程标准研制组编,《普通高中数学课程标准》,北京:北京师范大出版社,2003. [11]教育部基础教育司,数学课程标准研制组编,《全日制义务教育数学课程标准解读(实验稿)》,北京:北京师范大出版社,2002. [12]教育部基础教育司组织编写,《走进新课程——与课程实施者对话》,北京:北京师范大出版社,2002. [13]新课程实施过程中培训问题研究课题组编,《新课程与学生发展》,北京:北京师范大出版社,2001. 数学论文参考文献(二) [1]新课程实施过程中培训问题研究课题组编,《新课程理念与创新》,北京:北京师范大出版社,2001. [2][苏]AA斯托利亚尔,《数学教育学》,北京:人民教育出版社,1985年。 [3][苏]斯涅普坎,《数学教学心理学》,时勘译,重庆:重庆出版社,1987年。 [4]张奠宙,《数学教育研究导引》,南京:江苏教育出版社,1998年。 [5]丁尔升,《中学数学教材教法总论》,北京:高等教育出版社,1990年。 [6]马忠林,等,《数学教育史简编》,南宁:广西教育出版社,1991年。 [7]魏群,等,《中国中学数学教学课程教材演变史料》,北京:人民教育出版 社,1996年。 [8]张奠宙,等,《数学教育学》,南昌:江西教育出版社,1991年。 [9]严士健,《面向21世纪的中国数学教育》,南京:江苏教育出版社,1994年。 [10]傅海伦,《数学教育发展概论》,北京:科学出版社,2001年。 [11]李求来,等,《中学数学教学论》,长沙:湖南师范大学出版社,1992年。 [12]章士藻,《中学数学教育学》,南京:江苏教育出版社,1996年。 [13]十三院校协编组,《中学数学教材教法》,北京:高等教育出版社,1988年。 [14][美]美国国家研究委员会,方企勤等译,《人人关心数学教育的未来》,北 京:世界图书出版公司,1993年。 [15]潘菽,《教育心理学》,北京:人民教育出版社,1980年。 数学论文参考文献(三) [1]孙艳蕊,张祥德.利用极小割计算随机流网络可靠度的一种算法[J],系统工程学报,2010,25(2),284-288. [2]孔繁甲,王光兴.基于容斥原理与不交和公式的一个计算网络可靠性方法,电子学报,1998,26(11),117-119. [3]王芳,侯朝侦.一种计算随机流网络可靠性的新算法[J],通信学报,2004,25(1),70-77. [4][J],Networks,1987,17(2):227-240. [5]],(1):46-49. [6][J],(4):325-334. [7](3):389-395. [8]. [9]封国林,鸿兴,魏凤英.区域气候自忆预测模式的计算方案及其结果m.应ni气象学报,1999,10:470. [10]达朝究.一个可能提高GRAPES模式业务预报能力的方案[D].兰州:兰州人学,2011 [11]符综斌,干强.气候突变的定义和检测方法[j].大气科学,1992,16(4):482-492. [12]顾震潮.天数值预报屮过去资料的使用问题[J].气象学报,1958,29:176. [13]顾震潮.作为初但问题的天气形势数值预报由地而天气历史演变作预报的等值性[J].气象学报,1958,29:93. [14]黄建平,H纪范.海气锅合系统相似韵现象的研究[J].中NI科学(B),1989,9:1001. [15]黄建平,王绍武.相似-动力模式的季节预报试验[J].国科学(B)1991,21:216. 猜你喜欢: 1. 统计学论文参考文献 2. 关于数学文化的论文免费参考 3. 关于数学文化的论文优秀范文 4. 13年到15年参考文献论文格式 5. 浅谈大学数学论文范文
从算法教学管窥中国古代数学史俞 昕( 浙江湖州市第二中学 313000) 关于算法的涵义, 人们有着不同的界定. 普通高中数学课程标准( 实验) 在学生算法目标达成度上,重在算法思想的理解与应用,界定现代算法的意义就是解决某一类问题的办法. 确切地说,就是对于某一类特定的问题,算法给出了解决问题的一系列(有穷) 操作, 即每一操作都有它的确定性的意义( 使计算机能够按照它的指令工作) ,并在有限时间( 有穷步骤)内计算出结果.普通高中数学课程标准( 实验) 对! 算法部分∀进行说明时,突出强调! 需要特别指出的是, 中国古代数学中蕴涵了丰富的算法思想∀. 吴文俊先生曾经说过! 我们崇拜中国传统数学,决非泥古迷古、 为古而古. 复古是没有出路的. 我们的目的不仅是要显示中国古算的真实面貌, 也不仅是为了破除对西算的盲从,端正对中算的认识,我们主要的也是真正的目的, 是在于古为今用. ∀算法教学中蕴涵着丰富的数学史教育价值, 作为新时代的高中数学教师是有必要了解这一点的.1 中国古代数学的特点古代数学思想分为两大体系, 一个是以欧几里得的几何原本 为代表的西方数学思想体系,这个体系以公理化的思想、 抽象化的方法、 封闭的演绎体系为特色. 另一个则是以我国的九章算术 为代表的东方数学思想体系,这个体系以算法化的思想、 构造性的方法、 开放的归纳体系为特色.我国传统数学在从问题出发,以解决问题为主旨的发展过程中, 建立了以构造性与机械化为其特色的算法体系, 这与西方数学以欧几里得几何原本 为代表的所谓公理化演绎体系正好遥遥相对.中国古代数学中的! 术∀相当于现代数学术语中的! 公式∀,两者虽有相同点(都可以用来解决一类有关问题) , 其差异也非常之大. 主要表现在,! 公式∀只提供了几个有关的量之间的关系, 指明通过哪些运算可由已知量求出未知量,但并没有列出具体的运算程序,一般地,认为这种程序是已知的了. 但! 术∀则由怎样运算的详细程序构成的,可以说它是为完成公式所指出的各种运算的具体程序,即把! 公式∀展开为使用某种计算工具的具体操作步骤. 从这点看, ! 术∀正是现代意义上的算法, 是用一套! 程序语言∀所描写的程序化算法,可以照搬到现代计算机上去. 我国古代数学包括了今天初等数学中的算术、 代数、 集合和三角等多方面的内容.由于受实用价值观的影响, 中国传统数学的研究遵循着一种算法化思想,这种思想从九章算术 开始一直是中国古代数学著作大都沿袭的模式:实际问题# # # 归类# # # 筹式模型化# # # 程序化算法即将社会生产生活中的问题,先编成应用问题,按问题性质分类, 然后概括地近似地表述出一种数学模型, 借助于算筹, 得到这一类问题的一般解法. 把算法综合起来, 得到一般原理, 分别隶属于各章,人们按照书中的方法、 原理和实例来解决各种实际问题. 可以说,中国传统数学以确定算法为基本内容,又以创造和改进算法为其发展的方向.受九章算术 的影响,在之后的几个世纪,一些数学家的著作都以算法为主要特点,包括王孝通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘益的议古根源 、 秦九韶的数书九章 、 李冶的测圆海镜 和益古演段 、 杨辉的详解九章算法 、 日用算法 和杨辉算法 , 这些著作中包括了增乘开方术、 贾宪三角、 高次方程数值解法、 内插法、 一次同余式组解法等一些著名的算法,进一步发展了中国古代数学算法化的特点,使得算法的特点得到了进一步的强化和发展.1 1 中国古代数学的算法化思想算法化的思想是中国古代数学的重要特点,并贯穿于中国古算整个发展过程之中.即使是与24 数学通报 2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何方法与算法有机地结合起来,实现了几何问题的算法化.这样,从问题出发建立程序化的算法一直是古代中国数学研究的传统,也是中算家们努力的方向.这种算法化的思想着重构造实践,更强调! 经验∀、 ! 发现∀和构造性思维方式下从无到有的发明,对今天的算法教学与研究具有重要的启迪作用.中国古代数学算法化的思想具体表现如下:第一步,把实际中提出的各种问题转化为数学模型;第二步,把各种数学模型转化为代数方程; 第三步,把代数方程转化为一种程序化的算法; 第四步,设计( 并逐步改进)、 归纳、 推导(寓推理于算法之中)出各种算法; 第五步,通过计算回溯逐步达到解决原来的问题.1 2 中国古代数学的构造性方法所谓构造性方法是解决数学问题的一种方法,是创造性思维方式直接作用的结果.按照现代直觉主义者,特别是构造主义者的观点,对于一个数学对象,只有当它可以通过有限次的操作而获得,并且在每步操作之后都能有效地确定下一步所需要采取的操作, 才能说它是存在的.按照这种思维方式,可以使概念和方法按固定的方式在有限步骤内进行定义或得以实施,或给出一个行之有效的过程使之在有限步骤内将结果确定地构造出来.换言之,就是能用有限的手段刻画数学对象并针对问题提出具体的解法.中国古代数学的算法化思想与构造性的方法紧密相连.由于古代中算家所关心的大多是较为实用的问题,他们在解决问题时首先考虑是如何得到可以直接应用的、 可以方便操作的解,而不会满足于仅仅知道解在理论上的存在性. 因为这种纯粹的理论解对于受实用价值观影响的中算家来说是没有多大意义的.从而我们推断,构造性方法的产生是算法化思想直接作用的结果.从我国许多经典算书中可以发现, 数学构造性方法在算法中有许多精彩的体现. 例如就! 方程∀的筹算图阵及其程序设计而言,首先, ! 群物总杂,各列有数,总言其实∀,这是对每行中未知数的系数和常数项的安排,其次, ! 令每行为率,二物者再程,三物者三程,皆如物数程之∀,这是对诸行关系的安排, ! 并列为行∀又说明了什么叫! 方程∀. 这为中国古代数学的构造性方法提供了一个具有说服力的样板.由于构造性的方法特别强调运算的可操作程度, 所以构造出的! 术∀可以通过一系列有限的运算求出解来, 具有一般性.时至今日我国古算家所设计的许多算法几乎都可以整套照搬到现代的电子计算机上实现.这也是我国古算在算法上长期居于领先地位的一个重要原因.2 中国古代数学中的优秀算法案例2. 1 中国古代的代数学代数学是中国传统数学中一个值得骄傲和自豪的领域.中小学数学中的算术、 代数内容, 从记数以至解联立的线性方程组, 实质上都是中国古代数学家的发明创造.结合新课程的算法教学,笔者选取我国古代著名算法进行分析.2. 1. 1 求最大公约数的算法(更相减损术)中国古代数学中,未曾出现素数、 因数分解等概念,但是发明了求两整数的最大公约数的方法# # # 更相减损术: ! 可半者半之,不可半者,副置分母子之数, 以少减多, 更相减损,求其等也.以等数约之. ∀事实上此术中包含了三个步骤:第一步, ! 可半者半之∀, 即进行观察, 若分子、分母都是偶数,可先取其半;第二步, ! 不可半者, 副置分母、 子之数, 以少减多,更相减损,求其等也∀;第三步, ! 以等数约之∀.其中第二步! 以少减多, 更相减损∀是关键,又是典型的机械化程序.在中国古代数学中, 将最大公约数称作! 等∀.由于! 更相减损∀过程终可以在有限步骤内实现, 所以它是一种构造性的方法.若用现代语言翻译即为:第一步,任意给定两个正整数, 判断它们是否都是偶数. 若是,用2 约减,若不是, 执行第二步. 第二步, 以较大的数减去较小的数, 接着把所得的差与较小的数比较, 并以大数减小数.继续这个操作, 直到所得的数相等为止, 则这个数( 等数)或这个数与约简的数的乘积就是所求的最大公约数.下面运用 QBA SIC 语言来编写相应的程序( 见程序1) .25 2010 年 第49 卷 第2 期 数学通报程序 1INPUT! m, n= ∀ ; m, nIF m< n T HEN a= m m= n n= aEND IFk= 0WHILE m MOD 2= 0 AND n MOD2= 0 m= m/ 2 n= n/ 2 k= k+ 1WENDd= m- nWHILE d< > n IF d> n TH EN m= d ELSE m= n n= d END IF d = m- nWENDd= 2 ∃ k * dPRINT dEND程序 2INPUT A, BWHILE A < > B IF A> B T H EN A = A- B ELSE B= B - A END IFWENDPRINT BEND程序 3INPUT ! M, N (M> N )∀ ; M, NDOR= M- N IF R> N TH EN M= R ELSE M= N N= R END IFLOOP UNTIL R= 0PRINT MEND程序 4INPUT ! n= ∀ ; nINPUT! an= ∀; aINPUT! x= ∀ ; xv= ai= n- 1WH ILE i> = 0 PRINT ! i= ∀; i INPUT! ai= ∀ ; a v= v * x+ a i= i- 1WENDPRINT vEND程序 2和 3 是两个简化的参考程序, 是从不同的角度来实现更相减损的过程.! 更相减损术∀提供了一种求两数最大公约数的算法, 这是九章算术 的一个重要成就, 与古希腊欧几里得的几何原本 中用来求最大公约数的! 欧几里得算法∀, 即辗转相除法, 有异曲同工之妙. 欧几里得在几何原本 中针对这个问题引入了许多概念, 给出了冗长的逻辑证明. 尽管如此,他还是暗用了一条未加说明的公理, 即如果 a, b都被c 整除, 则a- mb也能被c 整除.中国古算采用的! 更相减损∀方法,实际上也暗用了一条未加说明的公理, 即若 a- b 可以被c 整除,则 a, b 都能被c 整除. 正如刘徽在九章算术注 中! 其所以相减者, 皆等数之重叠∀. 从形式上看! 更相减损术∀比! 辗转相除法∀更复杂, 循环次数要比辗转相除法多, 但对于计算机来说, 作乘除运算要比作加减运算慢得多, 因此更相减损术在计算机上更为好用.26 数学通报 2010 年 第49 卷 第2 期2. 1. 2 求一元 n 次多项式值的算法(秦九韶算法)秦九韶,南宋著名数学家,其学术思想充分体现在数书九章 这一光辉名著中,该著作不仅继承了九章算术 的传统模式, 对中算的固有特点发扬光大,而且完全符合宋元社会的历史背景, 是中世纪世界数学史上的光辉篇章. 书中记载了! 正负开方术∀、 ! 大衍求一术∀等著名算法.在数书九章 卷五第 17 个问题以! 尖田求积∀为例的算法程序中,可以看出秦九韶对于求一元n 次多项式f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x+ a0 的值所提出的算法.秦九韶算法的特点在于通过反复计算n 个一次多项式,逐步得到原多项式的值. 在欧洲, 英国数学家霍纳( Horner ) 在1819 年才创造了类似的方法, 比秦九韶晚了572年.秦九韶算法把求f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x + a0 的 值 转 化 为 求 递 推 公 式v0= anvk= vk- 1x+ an- k k= 1, 2, %, n中 v n 的值. 通过这种转化, 把运算的次数由至多( 1+ n) n2次乘法运算和n 次加法运算,减少为至多 n 次乘法运算和n 次加法运算,大大提高了运算效率.这种算法的QBASIC 语言程序如程序 4 所示.算法步骤是如下的五步: 第一步, 输入多项式次数 n、 最高次项的系数an 和x 的值;第二步,将 v 的值初始化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五步,判断i 是否大于或等于 0, 若是, 则返回第三步,否则输出多项式的值v .2. 2 中国古代的几何学中国古代的几何学从田亩丈量等生产生活中的一些实际问题中产生, 并为生产生活服务. 基于传统实用价值观的影响, 中国古代的几何学并没有发展成为像欧氏几何那样严密的公理化演绎体系,所以中国古代几何学在整个数学史上的地位并不突出,但在许多几何问题的处理上也突出了算法化这一特色. 下面以! 割圆术∀为例作简要分析.中国古代数学家刘徽创立! 割圆术∀来求圆的面积及其相关问题. 刘徽! 瓤而裁之∀,即对与圆周合体的正多边形进行无穷小分割,分成无穷多个以正多边形每边为底、 圆心为顶点的小等腰三角形, 这无穷多个小三角形的面积之和就是圆的面积. 这样通过对直线形的无穷小分割, 然后求其极限状态的和的方式证明了圆的面积公式.刘徽的算法! 割之弥细,所失弥少,割之又割, 以至于不可割, 则与圆合体而无所失矣∀体现出程序化的过程, 可以看出圆内接正多边形逐渐逼近圆的变化趋势,并且刘徽依此开创了求圆周率精确近似值的方法, 将这种极限思想用于近似计算.其中包含有迭代过程和子程序,是一种典型的循环算法,充分体现了程序化的特点.中算家的几何学,并不追求逻辑论证的完美,而是着重于实际计算问题的解决, ! 析理以辞, 解体用图∀, 以建立解决问题的一般方法和一般原则. 但另一方面,这种几何学又是以面积、 体积、 勾股相似等为基本概念,以长方形面积算法、 长方形体积算法、 相似勾股形的性质为出发点的, 整个几何理论建立在! 出入相补原理∀等基本原理之上.例如,由勾股定理自然地引起平方根的计算问题,而求平方根和立方根的方法, 其步骤就是以出入相补原理为几何背景逐步索骥而得.这方面内容的介绍, 不仅可以丰富学生的算法知识,而且可以通过揭示蕴藏其中的数学背景和文化内涵, 激发学生学习算法的兴趣,体会算法在人类发展史中的作用.3 中国古代数学算法的教学价值3. 1 培养正确数学观的良好平台中国传统算法尽管与现代算法在具体形式上差别很大,但是重要的是形式后面的认识论发展线索可以为现代算法教学的体系、 教学层次提供依据.它的具体数学知识载体也是现代算法教学的重要源泉. 各种算法的创立就是创造性劳动的产物,即是创造思维的一种! 凝固∀和! 外化∀. 其次, 通过把一部分问题的求解归结为对于现成算法的! 机械应用∀, 这就为人们积极地去从事新的创造性劳动提供了更大的可能性. 从而算法化也就意味着由一个平台向更高点的跳跃.吴文俊先生的研究使中国传统数学的算法重见天日, 开拓了数学机械化的新领域, 吴先生提出! 数学教育的现代化就是机械化∀.他在研究中这样写道: 数学问题的机械化, 就要求在运算和证明过程中, 每前进一步之后,都有一个确定的必须选27 2010 年 第49 卷 第2 期 数学通报择的下一步, 这样沿着一条有规律的, 刻板的道路,一直达到结论.证明机械化的实质在于, 把通常数学证明中所固有的质的困难,转化为计算的量的复杂性.计算的量的复杂性在过去是人力不可能解决的,而计算机的出现解决了这种复杂性.吴先生的理论和实践已经表明,证明和计算是数学的两个方面, 且又是统一的,这在数学教育中具有重要意义.我们应当引导学生了解古人对问题思考的角度,学会站在巨人的肩膀上,比如按照中国古代开方术的思路就可以编造程序在现代计算机上实现开方.培养学生在学习数学知识的同时更多地关心所学知识的社会意义和历史意义,力图在面向未来的同时,通过同传统上的哲学、 历史和社会学的思想结合起来, 形成正确的数学观.算法教学就为此搭建了一个良好的平台, 并且承载丰富的历史底蕴.3. 2 渗透爱国主义教育的最佳契机与西方相比, 中算理论具有高度概括与精练的特征, 中算家经常将其依据的算理蕴涵于演算的步骤之中, 起到! 不言而喻, 不证自明∀的作用,可以认为中国传统数学乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单, 精巧的理论建筑物. 因此, 中算理论可以说是一种! 纲目结构∀:目是组成理论之网的眼孔;纲是联结细目的总绳.以术为目, 以率为纲,即是依算法划分理论单元,而用基本的数量关系把它们连结成一个整体. 纲举目张,只有抓住贯串其中的基本理论与原理, 才能看清算法的来龙去脉.下面是吴文俊先生总结的! 关于算术代数部分发明创造的一张中外对照表∀.从算法教学管窥中国古代数学史中国 外国位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现分数运算 周髀算经 中已有, 在九章算术 成书时已成熟 印度最早在 7 世纪才出现十进位小数 刘徽注中引入, 宋秦九韶 1247年时已通行 西欧 16 世纪时始有之, 印度无开平方、 立方 周髀算经 中已有开平方, 九章算术 中开平、 立方已成熟西方在 4 世纪末始有开平方, 但还无开立方, 印度最早在 7 世纪算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问题与方法正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西方迟至 16 世纪始有之二次方程 九章算术 中已隐含了求数值解法,三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法三次方程 唐初( 公元 7 世纪初) 有列方程法, 求数值解已成熟西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有几何解高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪28 数学通报 2010 年 第49 卷 第2 期3. 3 品位数学美学思想的美妙境界中国古代数学不但具有实用性特征, 还蕴涵着丰富的美学思想. 比如九章算术 中列方程的方式,相当于列出其增广矩阵,其消元过程相当于矩阵变换,而矩阵是数学美学方法中对称最典型的表现形式之一; 九章算术 中用几何方法巧妙地解决了很多代数问题, 这是数形结合的统一: 把数学问题改编成歌诀,以便于掌握和传授,这是文学艺术与数学的统一. 总之, 在算法教学中, 应努力把握和利用自己文化传统中的积极因素进行教学,这对数学教育的发展具有重要的意义.参考文献1 中学数学课程教材研究开发中心. 普通高中课程标准实验教材书(数学) [ M] . 北京: 人民教育出版社, 20072 中华人民共和国教育部. 普通高中数学课程标准(实验) [ M] .北京: 人民教育出版社, 20033 李文林. 数学史概论(第二版) [ M ] . 北京: 高等教育出版社, 20024 王鸿钧, 孙宏安. 中国古代数学思想方法[ M] . 南京: 江苏教育出版社, 19885 张维忠. 数学, 文化与数学课程[ M] . 上海: 上海教育出版社, 19996 吴文俊. 吴文俊论数学机械化[ M ] . 济南: 山东教育出版社, 19957 代钦. 儒家思想与中国传统数学[ M] . 北京: 商务印书馆, 20038 费泰生. 算法及其特征[ J] . 数学通讯, 2004, 79 张奠宙. 算法[ J] . 科学, 2003, 55( 2)10 李建华. 算法及其教育价值[ J ] . 数学教育学报, 2004, 311 李亚玲. 算法及其学习的意义[ J ] . 数学通报, 2004, 2(上接第23 页) 实验教师对课改实验进行探索、 总结、 反思、 调整, 推广比较成熟的经验,同时纠正实验过程中的偏颇与极端行为,教学过程逐步进入新的稳定阶段.教学过程逐步过渡到以问题为主线、 以活动为主线的! 无环节∀模式.( 2)受不同的教学理念影响, 教师角色、 学生角色、 教学目标、 教学过程关注点等方面, 在教学过程中有很大差异.教师角色 学生角色 教学目标 教学过程关注领导者(权威)接 受 者(被动)让 学 生 掌握 数 学 知识技能知识 引入, 讲 解本质, 巩固练习主导者(决定)观 察 者(协助)让 学 生 观摩 数 学 产生过程展示 过程, 注 重建构, 强化训练引导者(组织)参 与 者(主动)让 学 生 参与 探 究 数学 生 成 过程问题 情境, 提 出问题, 学生活动( 3) 2004 年高中数学课程改革后, 课堂教学发生一定的变化,广泛地进行! 创设情境∀! 提出问题∀!引导学生探究探索∀, 出现了以! 问题主线∀、! 活动主线∀为主的课堂, 出现了! 问题情境学生活动建立数学运用数学同顾反思∀的整体课堂构思.这些改变对于揭示数学的内在本质, 发展学生的思维能力起到积极的作用.( 4) 由于受多种因素制约(特别是高考) ,与初中相比, 本次课改后高中数学课堂教学变化幅度不大,近半数的课堂教学模式仍然以五环节为主.对于课改倡导的教学理念, 只是渗透在传统的教学模式中,目前高中数学课堂教学改革的力度、 深度与课改的预期目标还有一定的距离.我们看到2008 年的赛课教案的创新、 探索力度, 远没有1990 年的名师授课录 大, 那时还没有明确提出课改理念,但他们却进行积极的探索, 关注学生主体. 而今天,课改的理念已经系统培训 5 年, 许多教师仍停留在形式层面,未能变成自觉的行为.参考文献1 李善良. 我国数学教学设计的探索与评析# # # 兼及十年初中数学教师说课评比活动[ J ] . 中国数学教育(初中版) , 2007, 92 编委会. 名师授课录(中学数学高中版) [ M] , 上海教育出版社, 19913 2000 年全国首届高中青年数学教师优秀课观摩与评比的教案(会议资料)4 2008 年全国第四届高中青年数学教师优秀课观摩与评比的教案(会议资料)5 李善良. 关于数学教学中问题的设计[ J] . 高中数学教与学,2008, 129 2010 年 第49 卷 第2 期 数学通报
北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
241 浏览 6 回答
137 浏览 6 回答
109 浏览 2 回答
182 浏览 6 回答
131 浏览 4 回答
144 浏览 6 回答
226 浏览 6 回答
284 浏览 3 回答
338 浏览 3 回答
91 浏览 3 回答
218 浏览 3 回答
276 浏览 4 回答
288 浏览 2 回答
343 浏览 5 回答
173 浏览 4 回答