褐煤 热值不高(),它是煤化程度最低的煤。其特点是水分高、比重小、挥发分高、不粘结、化学反应性强、热稳定性差、发热量低,含有不同数量的腐殖酸。多被用作燃料、气化或低温干馏的原料,也可用来提取褐煤蜡、腐殖酸,制造磺化煤或活性炭。一号褐煤还可以作农田、果园的有机肥料。 产地若以密西西比河为界,西部产烟煤和褐煤,我国的河南有产褐煤褐煤各种含量:碳含量70-80 % 氢含量5-6 % 氧和氮含量16-27 % 低发热量 10500-16700 *
美国是世界上煤炭资源最丰富的国家之一,1 800m以浅的地质资源总量为万亿t,1993年探明储量4 300亿t。在探明储量中,烟煤占,次烟煤占38%,褐煤占,无烟煤占,适于露天开采的储量占。煤炭资源赋存广泛,地区分布比较均衡。在全美50个州中,有38个州赋存煤炭,含煤面积达118×10�4km2,占国土面积的13%,可采储量为2 亿t(1996年),居世界第一位。 按地理位置可将美国的煤炭资源分为三大地区,即东部阿巴拉契亚地区、中部地区和西部地区。以上三个地区在探明储量中所占比重分别为、和。 美国适于炼焦的煤炭资源较为丰富,约占探明储量的35%,但低挥发份烟煤储量有限,只占探明储量的。炼焦煤的主要产地是阿巴拉契亚煤田,西部也有一些重要的烟煤产区。美国无烟煤资源不多,主要集中在宾夕法法亚州,但阿拉斯加、新墨西哥、犹他州、弗吉尼亚也有少部分无烟煤储量。 从煤炭资源的地理分布情况来看,虽然在50个州中有38个州发现了煤炭,但其储量主要集中于科罗拉多、伊利诺伊、蒙大拿、宾夕法尼亚、俄亥俄、西弗吉尼亚、怀俄明和肯塔基8州,其煤炭总储量占全美的84%。其中蒙大拿州、怀俄明州和伊利诺伊州最多,分别占全美煤炭探明储量的、和。 若以密西西比河为界,西部则较东部资源丰富,占全国储量的55%,适合露天开采的储量为东部的3倍。但东部多为优质炼焦煤、动力煤和无烟煤,热值较高(),且灰分低。西部煤质相对较差,多为次烟煤和褐煤,热值不高(),但含硫量较低(1%左右)。 美国的主要煤田有阿巴拉契亚煤田、伊利诺伊煤田、中西部煤田、尤宁堡煤田、保德河煤田、尤塔因煤田、格林河煤田、圣胡安煤田和科尔维尔高煤田,开发强度和储量最大的2个煤田分别是东部的阿巴拉契亚煤田和西部的保德河煤田。 美国东部和中部煤田由于接近现代化的工业基地,交通便利,开发较早。但最近一个时期以来,环保要求日益严格,低硫煤增产困难,限制了这一地区煤炭产量的增加。美国西部煤田煤层厚、埋藏浅含硫量低、储量丰富、开采成本相对较低,适于建设特大型露天矿和发展高产高效长壁矿井,因此这一地区煤炭工业发展迅速。1997年西部地区产煤,占全国煤产量的,这一比例在今后还将继续增长。
一、煤的工业分类的主要依据
煤的分类由于内容和目的不同,方法也有多种。早期的煤炭分类方法是根据煤的元素组成中碳、氢、氧等元素的含量进行区分,这种煤炭分类方法称为煤的科学分类法,以1899年英国赛勒()提出的煤炭分类方法比较著名。以后又有根据形成煤的原始物质和生成条件的不同而提出的成因分类法,将煤分为腐植煤、腐泥煤和残植煤等,这种分类方法仅适用于煤质研究和地质工作中;既有科学依据,又有实用意义的煤炭分类方法是近70年来以煤化程度和煤在热加工过程中所表现的特性为依据的技术分类法。煤化程度以镜质体平均反射率或挥发分产率为分类指标,煤在热加工过程中所表现的工艺性质则以煤在受热情况下的粘结性(或结焦性)和煤的发热量为另一个分类指标,中国、美国、前苏联、英国、波兰、法国和德国等国家的煤炭分类方法和国际煤炭分类都属这类分类方法。
二、中国煤的分类
中国最早的煤炭分类方法是1936年由中国地质学家翁文灏和金开英提出的“翁金氏分类法”。该分类方法是利用“加水燃率” 为指标,将中国煤分为褐煤、褐性烟煤、低级烟煤、中级烟煤、高级烟煤、低级无烟煤、中级无烟煤和高级无烟煤8类。这种方法仅以煤的工业分析指标对中国煤进行分类,只能将煤的大类(褐煤、烟煤和无烟煤)进行大体划分,不能适应煤炭生产、煤炭热加工和科学研究对煤炭分类的要求。
1952年和1953年,中国先后制订出东北区和华北区两个地区的“炼焦煤分类”方案,方案中所用的分类指标和煤种名称都一样,但区分的界线不尽一致,存在部分类别交叉的煤种,在使用上发生不少困难。1956年由煤炭部、冶金部和中国科学院有关科研单位共同研究后,提出了统一的“中国煤(以炼焦煤为主)分类方案”,以代表煤化程度的干燥无灰基挥发分产率Vdaf(%)和反映煤的结焦性的胶质层最大厚度Y值(mm)两个指标为参数,将中国煤分为10大类和24小类。该煤炭分类方案自1958年开始,在中国推广使用了近30年,在中国煤炭资源的勘探、开发、生产、经销和利用等方面起到统一的作用,对中国煤炭资源的合理开发和利用具有十分重要的意义。但随着中国经济建设事业的蓬勃发展,新的煤炭资源不断发现,科学技术水平日新月异,冶金、化工等工业部门对煤炭品质要求不断提高,该分类方案在使用过程中也发现存在一些问题。从1975年起,煤炭部和冶金部的生产、使用和科研单位经过近10年的共同研究,于1985年提出了“中国煤炭分类”国家标准,1986年由当时的国家标准局批准并发布(GB5751),在全国试行。“中国煤炭分类”见表7-4至表7-8和图7-1。
表7-4 煤炭分类总表
*凡Vdaf大于,G小于或等于5,再用透光率PM来区分烟煤和褐煤(在地质勘探中,Vdaf大于,在不压饼的条件下测定的焦渣特征为1~2号的煤,再用PM来区分烟煤和褐煤)。
**凡Vdaf大于,PM大于50%者,为烟煤;PM大于30%~50%的煤,如恒湿无灰基高位发热量Qgr,m,af大于24MJ/kg,则划为长焰煤。
表7-5 无烟煤的分类
*在已确定无烟煤小类的生产矿、厂的日常工作中,可以只按Vdaf分类;在地质勘探工作中,为新区确定小类或生产矿、厂和其他单位需要重新核定小类时,应同时测定Vdaf和Hdaf,按上表分小类。如两种结果有矛盾,以按Hdaf划分小类的结果为准(Hdaf为干燥无灰基氢含量,%)。
表7-6 烟煤的分类
*当烟煤的粘结指数测值G小于或等于85时,用干燥无灰基挥发分Vdaf和粘结指数G来划分煤类。当粘结指数测值G大于85时,则用干燥无灰基挥发分Vdaf和胶质层最大厚度Y,或用干燥无灰基挥发分Vdaf和奥亚膨胀度b来划分煤类。
**当G大于85时,用Y和b并列作为分类指标。当Vdaf小于或等于时,b暂定为150%;Vdaf大于时,b暂定为220%。当b值和Y值有矛盾时,以Y值为准来划分煤类。
分类用的煤样,如原煤灰分小于或等于10%时,不需减灰。灰分大于10%的煤样,需用GB474的煤样制备方法,用氯化锌重液减灰后再分类。
表7-7 褐煤的分类
*凡Vdaf大于,PM大于30%~50%的煤,如衡湿无灰基高位发热量Qgr,m,af大于24MJ/kg,则划为长焰煤。
表7-8 中国煤炭分类简表
*对G大于85的煤,再用Y值或b值来区分肥煤、气肥煤与其他煤类。当Y大于时,应划分为肥煤或气肥煤;如Y小于或等于时,则根据其Vdaf的大小而划为相应的其他煤类。
按b值划分类别时,Vdaf小于或等于时,暂定b大于151%的为肥煤;Vdaf大于时,暂定b大于220%的为肥煤或气肥煤。如按b值和Y值划分的类别有矛盾时,以Y值划分的类别为准。
**对Vdaf大于,G小于或等于5的煤,再以透光率PM来区分其为长焰煤或褐煤。
***对Vdaf大于,PM大于30%~50%的煤,再测Qgr,m,af,如其值大于24MJ/kg,则应划分为长焰煤。
分类用的煤样,除Ad小于或等于的不需减灰外,对Ad大于的煤样,应采用氯化锌重液选后的浮煤样(对易泥化的褐煤亦可采用灰分较低的原煤)(详见GB474)。
根据表7-8绘制成的“中国煤炭分类简图”(图7-1),可更清楚地看出中国煤炭分类的全面情况,使每一种性质的煤都能在图中体现。
在应用中国煤炭分类国家标准时,根据表78或中国煤炭分类图(图7-1),首先将所有的煤按煤的煤化程度分为褐煤、烟煤和无烟煤;对于褐煤和无烟煤,再分别按其煤化程度和工业利用途径分为2个和3个小类;烟煤按挥发分10%~20%,20%~28%,28%~37%和大于37%分为低、中、中高级、高挥发分烟煤。烟煤粘结性按粘结指数G区分:0~5为不粘结或微粘结煤;5~20为弱粘结煤;20~50为中等偏弱粘结煤;50~65为中等偏强粘结煤;大于65则为强粘结煤。对于强粘结煤,又把其中胶质层厚度大于25mm或奥亚膨胀度b大于150%(对于Vdaf大于28%的烟煤,b大于220%)的煤分为特强粘结煤。这样,在烟煤部分可分为24个单元,并用相应的数码表示。在编号的十位数中,1~4代表煤的煤化程度;在编号的个位数中1~6表示煤的粘结性。在这24个单元中,再按同类煤性质基本相似、不同类煤性质有较大差异的分类原则,将部分单元合并为12个类别。在煤类的命名上,考虑到新旧分类的延续性和习惯叫法,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个类别,另外增加了贫瘦煤、1/2中粘煤、1/3焦煤和气肥煤4个过渡性煤类。贫瘦煤是指粘结性较差的瘦煤,以区别于典型的瘦煤;1/2中粘煤是由原分类中的一部分粘结性较好的弱粘煤和一部分粘结性较差的肥焦煤和肥气煤组成;1/3焦煤是由原分类中一部分粘结性较好的肥气煤和肥焦煤组成,是焦煤、肥煤和气煤中间的过渡煤类,也具有这3类煤的一部分性质,但且具有较好的结焦性;气肥煤在原分类方案中属肥煤大类,其结焦性比典型肥煤要差得多,故新的煤炭分类国家标准将它单独列为一类,克服了原分类方案中同类煤性质差异较大的缺陷。
图7-1 中国煤炭分类简图
说明:
1.分类用煤样的缩制按GB474进行。原煤样灰分小于或等于10%的不需要分选减灰。灰分大于10%的煤样需用规定的氯化锌重液减灰后再分类(对易泥化的低煤化度褐煤,可采用灰分尽量低的原煤)。
等于85为指标转换线。当G大于85时,用Y与b值并列作为分类指标,以划分肥煤或气煤与其他煤类的指标。Y大于者,划为肥煤或气肥煤;当Vdaf小于或等于时,b值暂定为150%;Vdaf大于时,b值暂定为220%。当b值和Y值划分煤类有矛盾时,以Y值为准。
3.无烟煤划分小类按Hdaf与Vdaf划分结果有矛盾时,以Hdaf划分的小类为准。
大于,PM大于50%者为烟煤;透光率PM大于30%~50%时,以Qgr,m,af大于24MJ/kg者为长焰煤。
在新煤炭分类国家标准中,对长焰煤和褐煤之间的划分采用目视比色法透光率PM作为主要分类指标,即挥发分Vdaf大于37%,G值小于或等于5的煤再测PM值。实际上为了减少G值的测定次数,对Vdaf大于37%的低煤化度煤,如其焦渣特征为3~8号,就可以确定它不属于褐煤而不测透光率PM值,直接根据G值的大小而定为相应的烟煤类;如焦渣特征为1~2号,再测定PM值,大于50%者可以定为长焰煤类而不必再测定G值。因为焦渣特征1~2号的低煤化度煤,不仅G值不可能大于35(即气煤的G值下限),而且也不会大于5(即42号长焰煤的G值下限)。但要注意:作为划分褐煤和长焰煤用的煤样,当Vdaf大于37%时,在测定挥发分时不应压饼,压饼会增高煤的粘结性。
当透光率测值PM大于30%~50%时,则还要测定煤的最高内在水分MHC,然后按下列公式换算成恒湿无灰基煤的高位发热量:
煤地质学
如Qgr,m,af大于24MJ/kg,则该煤样应划分为长焰煤;若Qgr,m,af值小于或等于24MJ/kg,则应划分为褐煤。鉴于煤的最高内在水分测定方法十分复杂,需时又长,为此作者对PM大于30%~50%的煤,研究了PM与Qgr,m,af的相关关系。大量试样的研究结果表明,PM小于38%的煤,Qgr,m,af几乎都在24MJ/kg以下,因而对Vdaf大于37%,PM小于38%的年轻煤,一般可不再测定煤的最高内在水分和高位发热量而直接确定为褐煤。个别煤样由于测值偏差较大而致PM小于38%时,仍有Qgr,m,af大于24MJ/kg的反常现象,但从整个矿区或矿井的平均PM来看,则PM小于38%,其Qgr,m,af的平均值必然小于24MJ/kg无疑。对PM小于38%的煤样,似可直接确定为褐煤,这样对煤田地质勘探来说,可减少许多Qgr,m,af的测定。总之,平均PM大于30%~35%的煤,则肯定其Qgr,m,af值在24MJ/kg以下,而不必测定MHC和Qgr,ad及计算Qgr,m,af值了。至于PM大于38%的煤,也只有一部分矿井煤的Qgr,m,af在24MJ/kg以上而属于长焰煤,另有相当大部分煤的Qgr,m,af仍在24MJ/kg以下而为褐煤。至于PM小于30%的煤则为年轻褐煤。
在烟煤类中,对G大于85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度来区分肥煤、气肥煤与其他烟煤类的界限(见表7-8)。
当Y值大于25mm时,如Vdaf大于37%,则划分为气肥煤;如Vdaf小于37%,则划分为肥煤。当Y值小于25mm时,则按Vdaf值的大小而划分为相应的煤类,如Vdaf大于37%,则应划分为气煤类,如Vdaf大于28%~37%,则应划分为1/3焦煤;如Vdaf在28%以下,则应划分为焦煤类(详见表7-8)。
这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。同时,对G值大于85的煤,有许多矿区煤的Y值都在25mm以下(例如淮南、七台河等矿区),在这种情况下也就没有必要再用Y值来确切区分牌号了,而只用G值即可确定其牌号。对开滦、枣庄等某些矿井,由于其G值均大于85,而Y值又均大于25mm,对于这种矿区,也就可不测G值,而用Y值来确定其牌号。只有一些未知牌号的勘探区,需要先测G值,然后再按其测值大小确定是否需要测定Y值。对煤质牌号基本清楚的矿井、煤层,在确定牌号时可根据情况而相应地减少测定项目。
在我国新的煤炭分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度b值(%)来确定肥煤、气肥煤与其他煤类的界限。对Vdaf小于28%的煤,暂定b值大于150%的为肥煤;对Vdaf大于28%的煤,暂定b值大于220%的为肥煤(当Vdaf小于37%时)或气肥煤(当Vdaf值大于37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因此,在确定新分类的强粘结性煤的牌号时可只测Y,而暂不测b值。
在无烟煤阶段,按Hdaf和Vdaf来划分小类别,即Vdaf小于(Hdaf小于)的为一号无烟煤,Vdaf大于~(Hdaf大于2%~3%)的为二号无烟煤,Vdaf大于~10%(Hdaf大于3%)的为三号无烟煤。当按Vdaf划分的小类别与按Hdaf划分的小类别有矛盾时,以按Hdaf划分的类别为准。大多数情况均可用Vdaf来确定无烟煤的小类别,只有北京和四望嶂等少数矿区煤的Vdaf和Hdaf之间的关系有反常现象,这时才需用Hdaf来正确地确定其小类别。
新的煤分类国标把我国从褐煤到无烟煤之间共划分为14个大类和17个小类,主要是按照各小类工艺利用特性的不同而划分。褐煤划分为2个小类,相当于年轻褐煤(51号褐煤)和年老褐煤(52号褐煤),也是根据其性质和利用特征不同而划分的。在烟煤中共划分为贫煤、贫瘦煤、瘦煤、焦煤、肥煤、气肥煤、气煤、1/3焦煤、1/2中粘煤、弱粘煤、不粘煤和长焰煤共12个煤类。
分类中每一类煤均可用汉语拼音代号表示,每一类煤均用两个汉语拼音的大写字母表示,其来源是各取其汉语拼音中的第一个字母来表示。如焦煤为JM,J代表焦(Jao),M代表煤(Mei)。
在新的煤炭分类国标中,还采用了数码编号来表示煤类。如气肥煤的数码编号是46,但气煤有34,43,44,45共4个数码编号。在各类煤的数码编号中,十位数代表干燥无灰基挥发分的大小。如无烟煤的挥发分最小,十位数字为0;褐煤的挥发分最大,十位数字为5。对烟煤来说,数码编号中的个位数表征它的粘结性,个位数的数码编号越小,其粘结性越差。
对褐煤和无烟煤来说,每一个数码编号代表1个小类别,如01,02,03分别代表1号、2号和3号无烟煤,51和52各代表1号和2号褐煤。在烟煤阶段,每一数码编号并不代表1个小类。在同类别的烟煤中,每一个数码编号的煤的性质也是有所不同的。如焦煤类中的24号煤,其粘结性就明显地低于25号煤。又如焦煤类中15号煤,其挥发分Vdaf又明显地低于25号煤。在焦煤中,以数码编号为25号的结焦性最好。但对煤矿来说,由于14号、24号和25号焦煤均属同一比价,因而也就没有必要按数码编号来细分其结焦性的好坏或挥发分的高低了。在焦化、燃烧或气化等工业部门生产中,采用数码编号仍有一定的指导意义。
中国煤炭分类国家标准(GB5751)将中国煤分为14大类,各大类煤的性质和主要用途如下:
1.无烟煤(WY)
煤化程度最高的一类煤,挥发分低,含碳量最高,光泽强,硬度高,密度大(纯煤真密度最高可达),燃点高,无粘结性,燃烧时无烟。这类煤还按其挥发分产率及用途分为3个小类别:挥发分产率以下的无烟煤01号为年老无烟煤,以作碳素材料等高碳材料较好;挥发分产率大于~的为典型无烟煤(02号),是生产合成煤气的主要原料;挥发分产率大于的为年轻无烟煤(03号),可作为高炉喷吹燃料。年老无烟煤热稳定性较差。这3类无烟煤都是较好的民用燃料。
无烟煤主要是民用和制造合成氨的原料。低灰低硫、可磨性好的无烟煤可作高炉喷吹及烧结铁矿石的燃料,也可制作各种碳素材料,如碳电极、阳极糊、活性炭等。
2.贫煤(PM)
烟煤中煤化程度最高、挥发分最低而接近无烟煤的一类煤,国外也有称之为半无烟煤。这种煤燃烧时火焰短、耐烧,但热值较高,无粘结性,加热后不产生胶质体,不结焦,多做动力、发电或民用燃烧使用。
3.贫瘦媒(PS)
在烟煤中煤化程度较高、挥发分较低的煤,受热后只产生少量胶质体,粘结性较差,其性质介于贫煤和瘦煤间,大部分作为动力或民用燃料,少量用于制造煤气。
4.瘦煤(SM)
是烟煤中煤化程度较高、挥发分较低的一种,受热后能产生一定数量胶质体,属中中等粘结性烟煤。单种煤炼焦时能炼成熔融不好、耐磨强度差,但块度较大、裂纹少、抗碎强度较好的焦炭。可作为炼焦配煤的原料,并可作为瘦化剂,也可作为民用和动力燃料。
5.焦煤(JM)
烟煤中煤化程度中等或偏高的一类煤,受热后能产生热稳定性较好的胶质体,具有中等或较强的粘结性;单种煤炼焦时可炼成熔融好、块度大、裂纹少、强度高而耐磨性又好的焦炭,是一种优质的炼焦用煤。但其膨胀力大,推焦困难。
焦煤(1/3JM)
中、高挥发分,强粘结性烟煤,单独炼焦时能产生熔融性良好、强度较高的焦炭。是良好的炼焦配煤。
7.肥煤(FM)
是煤化程度中等的烟煤,在受热到一定温度时能产生较多的胶质体,有较强的粘结性,可粘结煤中一些惰性物质。用肥煤单独炼焦时,能产生熔融良好、强度高、耐磨强度好的焦炭,但焦炭有较多的横裂纹,焦根部分有蜂焦,其强度和耐磨性也比焦煤稍差,是炼焦配煤中的重要组分,或称炼焦配煤的基础煤,但不宜单独使用。
8.气肥煤(QF)
高挥发性、粘结性烟煤,单独炼焦时产生大量气体及液体产品。适于高温干馏制煤气,用于炼焦配煤时可增加化工产品的产率。
9.气煤(QM)
是煤化程度较低、挥发分较高的烟煤,受热后能生成一定量的胶质体,但胶质体的稳定性较差,粘结性从弱到中等均有。单种煤炼焦时产生出的焦炭细长、易碎,并有较多的纵裂纹,焦炭强度和耐磨性均较差。在炼焦中能产生较多的煤气、焦油和其他化学产品,多作为配煤炼焦使用,也是生产干馏煤气的好原料。
中粘煤(1/2ZN)
中、高挥发分,中等粘结性烟煤,部分可炼出一定强度的焦炭,部分炼出的焦炭强度差、粉焦率高。作炼焦配煤时可配入适量,也可作为气化用煤和动力用煤。
11.弱粘煤(RN)
粘结性差的低、中煤级烟煤,加热时产生的胶体少,单独炼焦时焦炭的块度小,粉焦率很高。适于作气化用煤、电厂、机车和锅炉燃料,低灰低硫的弱粘结煤也可用于配煤炼焦。
12.不粘煤(BN)
成煤时受一定程度氧化的低、中煤级烟煤,加热时不产生胶质体,无粘结性,煤的水分高、氧含量高,有次生腐植酸。用于气化、发电和民用燃料。
13.长焰煤(CY)
高挥发分低煤级烟煤,无至弱粘结性,年轻的长焰煤还含少量腐植酸,少量长焰煤加热时产生胶质体,形成细长焦炭,但其程度差、粉焦率高。用于气化、发电,也可作机车燃料。
14.褐煤(HM)
分老褐煤和年轻褐煤。水分多、密度小、不粘结,含腐植酸,氧含量高,化学反应性强,热稳定性差,块煤加热时破碎严重,放在空气中易风化,碎裂成小块或粉末,发热量低。可作为电厂燃料、气化原料、锅炉燃料,有些可制造活性炭、磺化煤,部分年轻褐煤可抽提褐煤蜡或腐植酸。
三、国际煤炭分类
由于各国煤炭资源特点不同和科学技术水平的差异,世界各主要产煤国家都根据本国的资源特点提出不同的煤炭分类方法。世界各国煤炭的分类和命名不一致,分类指标及测试方法也各不相同,所以进行国际煤炭贸易及学术、资料交流十分不便。为了结束煤炭分类命名的混乱状态,便于各国的煤炭贸易及相互比较,1949年联合国欧洲经济委员会(ECEUN)曾组织欧洲和美国等10多个国家研究制订国际统一的煤分类法,又于1956年颁布了“硬煤国际分类方案”,所谓硬煤是指烟煤和无烟煤,即Qgr,maf>24MJ/kg的煤。该分类方案首先用干燥无灰基挥发分(Vdaf)和含水无灰基高位发热量(Qgr,maf)把煤划分为十大类,每一大类中又以煤的粘结性(坩埚膨胀序数和罗加指数)把煤分为4个组别,每一组别中又以结焦性(奥亚膨胀度和葛金焦型)把煤分为6个亚组别,共划分出62个煤种,其中无烟煤3个,烟煤59个。每个煤种用三位数字表示(类、组、亚组的代码)。由于煤种划分过细,使用不便,且采用了可相互取代的指标,造成分类混乱,故各国没有认真执行这个分类方案。
国际标准化组织(ISO)1974年制订了褐煤的国际分类方案,分类指标采用无灰基总水分(Mt,af),把褐煤分为6类,每类中又以干燥无灰基焦油产率(Tar,daf)划分为5组,共划分出30个小类,每小类用两位数字表示(类、组的代码),但该分类也没很好执行。
1985年2月在瑞士日内瓦召开了国际煤炭分类会议,讨论了新的煤炭分类,取得了基本一致的意见。1988年2月在美国纽约又召开了国际煤炭分类会议,对原分类方案进行了修改和补充。20世纪90年代以来,国际煤炭分类已趋向采用表征煤化程度、煤岩特征和煤的工艺性质的多种指标的编码分类法,使每一类煤都有表示煤的各种性质的编码,根据各类煤的编号,即可较全面地了解煤的性质。国际标准化组织(ISO)则主张从市场经济和国际贸易出发,制订国际统一的商业分类方法。
1)煤炭分类只包括煤,而不包括泥炭、油页岩、石墨及其他碳氢化合物。
2)世界各国在褐煤、烟煤、次烟煤、硬煤等名词术语上不尽相同,为统一起见,会议引入煤化程度或煤级(rank)的概念,即低煤化度煤、中煤化度煤和高煤化度煤,大体上相当于褐煤、烟煤和无烟煤。当恒湿无灰基高位发热量Qgr,maf≤24MJ/kg,镜质组平均随机反射率Re,v<时为低煤级煤。中煤级煤和高煤级煤的分界由苏、法两国提出方案(大约为Re,v<)。
3)煤的分类采用编码系统,共用9个指标14个编码(表79),即:①镜质组油浸平均随机反射率( e,v);②反射率直方图;③惰质组百分含量(I);④壳质组百分含量(E);⑤坩埚膨胀序数(CSN);⑥干燥无灰基挥发分(Vdaf);⑦干燥基灰分(Ad);⑧干燥基全硫含量(St,d);⑨恒湿无灰基高位发热量(Qgr,maf)。每种煤用14个数码表示。
· e,v:编号为02~50,代表 e,v在~之间,间隔1,共49个编号。如编号为04,则 e,v在~之间。
·R直方图:即反射率分布特征,编号为0~5,间隔为1,共6个编号。反射率标准差S≤为0号,无间断;S在~之间为1号,无间断;S>为2号,无间断;3号有1个间断;4号有2个间断;5号有两个以上间断。
·I:编号为0~9,代表I为10%~90%,间隔10,共10个编号。如编号为2,表示I为20%~<30%。
·E:编号为0~9,代表E为0%~40%,间隔5,共10个编号。如编号为4,表示E为15%~20%。
·CSN:编号为0~9,代表坩埚膨胀序数从0~91/2号,间隔1,共10个编号。如编号6,CSN为6~61/2。
·Vdaf:编号为48~01,间隔1~2,共290编号,代表Vdaf=1%~2%。编号为48~10,间隔为2,共20个编号,即48,46,44…10;编号09~01,间隔为1,共10个编号。例如编号32,代表Vdaf=32%~34%,编号04,代表Vdaf=4%~5%。
·Ad:编号00~20,间隔1,共21个编号,代表Ad=(0~%)~(20%~21%)。例如编号为09,代表Ad=9%~10%。
·St,d:编号00~30,间隔1,共31个编号,代表St,d=(~)~(~)。例如编号为11,代表St,d=~。
·Qgr,maf(MJ/kg):编号21~39,间隔1,共19个编号,代表Qgr,maf从小于22MJ/kg到大于39MJ/kg。例如编号30,代表Qgr,maf=(30~31)MJ/kg。
表7-9 国际煤炭分类草案 (1988年美国纽约)
续表
钻井深度
超深井钻探国外起步较早。1984年,前苏联在科拉半岛钻成世界第一口超深井CΓ-3井,井深12260m,1991年第二次侧钻至12869m,至今仍保持着世界最深井的记录。美国成功钻成多口9000m以深的井,罗杰斯1井,井深9583m;已登1井,井深9159m;瑟弗兰奇1-9#井,井深9043m;Zmmalon 2井,井深9029m。德国KTB科学深钻,井深9101m。
井内温度
前苏联科拉半岛CΓ-3井,井底温度215℃;美国索尔顿湖高温地热科学钻探,井深3200m,温度353℃;德国KTB科学钻探,井温280℃;日本葛根田地热区WD-1A井,井深3729m处曾钻遇500℃超高温地层。
高温处理剂
国外深井、超深井钻井起步较早,20世纪60年代,研制成功了抗盐、抗钙和抗150~170℃的铁铬盐降黏剂;70年代,研制成功了磺化褐煤、磺化丹宁、磺化酚醛树脂及它们与磺化褐煤的缩合物,这类处理剂的抗温能力大部分在180~200℃之间;同时,也研制出了改善高温流变性的低分子量聚丙烯酸盐和降高温滤失量的中分子量聚丙烯酸盐。由于褐煤类产品高温热氧化降解,被盐和钙污染后使钻井液增稠,降滤失效果下降;聚丙烯酸盐类不含铬,热稳定性好,但抗二价阳离子能力差;磺化酚醛树脂需和磺化褐煤类配合使用才能达到明显效果,但抗温和抗盐效果有限。为此,国外工作者在80年代以后进行了广泛而深入的研究,研制了很多耐温超过200℃的高温泥浆处理剂。
Dickert以AMPS、AM和N-乙烯基-N-烷基酰胺(NVNAAM)等为原料研制开发了两种耐高温降滤失剂,在超过200℃条件下均具有良好的降滤失效果,它们形成的钻井液体系在pH值为8~的范围内综合性能最佳。
美国的Patel以AMPS为聚合单体,以N,N′-亚甲基-双丙烯酰胺(MBA)为交联剂,通过可控交联合成了一种用于水基钻井液的高温降滤失剂,该剂在400℉(205℃)条件下抗温能力良好,而且抗钙镁性能出众,是一种优良的高温水基钻井液降滤失剂。
Thaemlitz等研究开发了两种新型钻井用聚合物,并以此为主剂获得了一种新型环境友好型抗高温水基聚合物钻井液体系,该体系主要用于高温高压钻井,耐温可达232℃。
美国的Soric和德国的Heier以乙烯基胺(VA)和乙烯基磺酸(VS)单体为原料,通过共聚获得了一种抗温能力超过230℃的新一代抗高温降滤失剂Hostadrill 4706。室内试验表明,这种相对分子质量在5×105~10×105之间的降滤失剂具有出众的抗盐性能(在饱和盐水中仍具有良好的性能),而且还可以显著改善钻井液的流变性能。
Polydrill是德国BASF公司(原SKW公司)推出的一种高温降滤失剂,美国的Baker Hughes公司也有与之相似的商品出售,这是一种相对分子质量在2×105左右的磺化聚合物,其耐温能力可以达到260℃;Polydrill不仅可以保持钻井液或完井液体系具有稳定的流变性能,而且它能够抵抗多种污染物对钻井液性能的影响;Polydrill的耐盐能力同样突出,它可抗KCl和NaCl至饱和,抗钙、镁含量可达×104~10×104μg/g。
Mil-Tem是ARCO公司生产的一种抗高温降滤失剂,它由磺化苯乙烯(SS)和马来酸酐(MA)共聚而成,相对分子质量较小,在1000~5000之间,该产品抗温可达229℃。
Pyro-Trol和Kem Seal是Baker Hughes公司开发的两种高温钻井液用降滤失剂,二者均为该公司的专利产品。其中Pyro-Trol是AMPS和AM的共聚物,而Kem Seal为AMPS与N-烷基丙烯酰胺(NAAM)的共聚物,一般两者配合使用。现场使用效果表明,两者均具有出众的高温稳定性能,可用于260℃高温地层。
M-I钻井液公司研制出一种新型共聚物,是一种有效地高温高压降滤失剂。降滤失剂Hostadrill4706,是在乙烯磺酸盐和乙烯氨基化合物的基础上开发出的,抗温稳定性高达230℃。
钻井液体系
前苏联科学钻探用钻井液体系
前苏联主要采用两种钻井液体系,即抗高温低密度聚合物钻井液体系和抗高温高密度聚合物钻井液体系。
(1)抗高温低密度聚合物钻井液体系
科拉半岛CΓ-3超深井在结晶岩中钻进采用了抗高温低密度聚合物体系。体系组分为见表。
表 科拉半岛采用的低固相聚合物泥浆体系组分
(2)抗高温高密度聚合物钻井液体系
秋明SG-6井深7502m,7025m时井温205℃,地层异常压力,采用抗高温高密度聚合物钻井液体系,其组分见表。
由于前苏联科学深钻起步较早,聚合物等很多优良处理剂尚未用于钻井行业,因此为了适应井深、井温高以及其他复杂地质条件,其泥浆体系的特点是:固相含量高,处理剂品种繁多、用量大。
表 秋明超深井采用的高密度聚合物泥浆体系组分
德国KTB科学钻探用钻井液体系
KTB井分先导孔和主孔用钻井液。先导孔开始用Dehydrill HT无固相钻井液,D-HT是一种硅酸盐化合物,高温下流变性稳定,但失水量大,腐蚀性强。主孔以此为基础,加入人工锂蒙脱石黏土、Hostadrill 3118,称D-HT/HOE体系,井深7100m后泥浆性能恶化,高温条件下泥浆黏度降低,携屑困难,井眼扩大。经克劳斯特尔大学研究,转化为D-H/HOE/Pyrodrill体系,其组分为见表。
表 D-H/HOE/Pyrodrill钻井液体系组分
转换后泥浆低剪黏度提高,高温失水降低,携屑能力改善,但漏斗黏度和高剪黏度增加到无法接受(FV≥240s,直至不流)。
KTB井钻井液管理人员开始只注重流变性稳定,采用D-HT无固相改性硅酸盐钻井液。钻进施工中,性能恶化,井壁坍塌,携屑困难,因此不得不转化为控制高温失水的钻井液体系。采用了大量的磺化高聚物和共聚物,体系在高温下(280℃)导致流变性失调,承载岩屑能力更差,固相无法控制,井壁缩径严重(地质专家解释为岩层流动)。最后在9101m(设计井深10000m)提前终孔。
美国科学钻探钻井液
1974年美国在俄克拉何马钻成了当时世界最深井——罗杰斯1号井,孔深9583m。由于泥浆密度对井内压力异常失控,诱发井喷,地层流体以硫磺为主,在井内迅速凝固而终孔。1985年在索尔顿S2-14孔,以研究高温地热为中心的科学钻探(SSSDP计划)孔,孔深3220m,地温353℃;1988年巴耶斯井1762m,井底温度295℃。美国高温井钻进所采用的钻井液主要有:
1)聚磺钻井液体系,如由Magcobar公司提供的抗高温DURATHERM水基钻井液体系,主要材料为黏土、PAC、XP-20(改性褐煤)、Resiner(特殊树脂),pH为~。
2)海泡石聚合物钻井液:将黏土换成海泡石土,抗温能力明显提高。
3)分散性褐煤-聚合物钻井液体系:由Chevorn服务公司研制,采用该体系在密西西比海域,成功钻进,井底温度℃。
4)日本科学钻探钻井液
据日本《深钻泥浆》(佐野守宏)报道,日本基本上使用分散体系,不采用聚合物组分。推荐了木素磺酸盐泥浆,其特点是有一定的抗高温和抑制能力,固相(岩屑)承载能力大,其主要组分见表。
表 日本高温地热井钻探所使用的泥浆体系
该体系具有非常好地抗温性能,但组分中含铬离子的材料对环境有影响。
近几年,日本研究使用温度在210℃以上的水基钻井液,该钻井液以Therma Vis及G-500S两种超高温材料为主体,外加造壁剂、高温降滤失剂、井眼稳定剂和高温润滑剂。使用该体系在“三岛”基地完成6300m深井钻进,井底温度为225℃。
煤的一类。煤化程度仅高于泥煤的精煤。一种介于泥炭与沥青煤之间的棕黑色、无光泽的低级煤。由于它富含挥发份,所以易于燃烧并冒烟。剖面上可以清楚地看出原来木质的痕迹。含有可溶于碱液内的腐殖酸。含碳量60%~77%,密度约为,挥发成分大于40%。无胶质层厚度。热值约为兆焦/公斤(5500-6500千卡/公斤)。多呈褐色或褐黑色,相对密度~。这种煤因为腐殖质含量高,煤化程度低,一般不直接用于充当燃料,但因为它腐殖质含量高,通常先隔绝空气高温处理,可以得到焦炭和利用价值更高的煤焦油。
174 浏览 3 回答
351 浏览 3 回答
274 浏览 5 回答
106 浏览 2 回答
87 浏览 4 回答
95 浏览 4 回答
88 浏览 4 回答
275 浏览 4 回答
155 浏览 4 回答
173 浏览 3 回答
243 浏览 3 回答
263 浏览 6 回答
102 浏览 5 回答
340 浏览 2 回答
123 浏览 4 回答