牛顿和莱布尼兹用各自不同的 方法 ,创立了微积分学。如果说牛顿接近最后的结论要比莱布尼兹早一些,那么莱布尼兹发表自己的结论要早于牛顿。虽然牛顿的微积分 应用 远远超过莱布尼兹的工作,刺激并决定了几乎整个十八世纪 分析 的方向,但是莱布尼兹成功地建立起更加方便的符号体系和 计算 方法。两位微积分的奠基人,一位具有英国式的处事谨慎,治学严谨的风度,一位具有德国人的哲理思辨心态,热情大胆。由于阴阳差错的 时代 背景, 过分追求严谨的牛顿迟迟未将自己的发现发表,让莱布尼茨抢了一个发表的头筹。 牛顿和莱布尼兹的 哲学 观点的不同导致了他们创立微积分的方法不同。牛顿坚持唯物论的经验论,特别重视实验和归纳推理。他在 研究 经典力学 规律 和万有引力定律时,遇到了一些无法解决的数学 问题 ,而这些数学问题用欧几里德几何学和16 世纪的代数学是无法解决的,因此牛顿着手研究新的以求曲率、面积、曲线的长度、重心、最大最小值等问题的方法———流数法。“牛顿的研究采用了最初比和最后比的方法。他认为流数是初生量的最初比或消失量的最后比。初生量的最初比就是在初生的瞬间的比值,消失量的最后比就是量在消失的瞬间的比值。”[4 ] (p. 180) 这个解释太模糊了,算不上精确的数学概念,只不过是一种直观的描述。最初比和最后比的物理原型是初速度与末速度的数学抽象,在物体作位置移动的过程中的每一瞬间具有的速度是自明的,牛顿就是从这个客观事实出发提出了最初比和最后比的直观概念。这样他就给出了极限的观点。莱布尼兹的微积分创造始于研究“切线问题”和“求积问题”,他从微分三角形认识到:求曲线的切线依赖于纵坐标之差与横坐标之差的比值;求曲边图形的面积则依赖于在横坐标的无限小区间上的纵坐标之和或无限薄的矩形之和。莱布尼兹认识到求和与求差运算是可逆的。莱布尼兹用无穷小的思想给出了微积分的基本定理,并 发展 成为高阶微分。莱布尼兹的无穷小是分阶的,这源于他哲学中的单子论思想。“莱布尼兹在单子论中指出:不同的单子其知觉的清晰程度是不一样的,并从一种知觉向另一种知觉过渡和变化,发展就是由单子构成的事物,由低级向高级的不同等级的序列。