论文格式模板(通用5篇)
论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。下面是我给大家带来论文格式模板,欢迎阅读,希望对大家有帮助!
论文格式
一、题目是文章最重要和最先看到的部分,应能吸引读者,并给人以最简明的提示。
1、应尽量做到简洁明了并紧扣文章的主题,要突出论文中特别有独创性、有特色的内容,使之起到画龙点睛,启迪读者兴趣的作用。
2、字数不应太多,一般不宜超过20个字。
3、应尽量避免使用化学结构式、数学公式或不太为同行所熟悉的符号、简称、缩写以及商品名称等。题目中尽量不要用标点符号。
4、必要时可用副标题来做补充说明,副标题应在正题下加括号或破折号另行书写。
5、若文章属于“资助课题”项目,可在题目的右上角加注释角号(如※、#等),并在脚注处(该文左下角以横线分隔开)书写此角号及其加注内容。
6、为了便于对外交流,应附有英文题名,所有字母均用大写,放在中文摘要与关键词的下面。
二、作者署名是论文的必要组成部分,要能反映实际情况。
1、作者应是论文的撰写者,是指直接参与了全部或部分主要工作,对该项研究作出实质性贡献,并能对论文的内容和学术问题负责者。
2、研究工作主要由个别人设计完成的,署以个别人的姓名;合写论文的署名应按论文工作贡献的多少顺序排列;学生的毕业论文应注明指导老师的姓名和职称。作者的姓名应给出全名。
3、作者的下一行要写明所在的工作单位(应写全称),并注上邮政编码。
4、为了便于了解与交流,论文的最后应附有通迅作者的详细通讯地址、电话、传真以及电子信箱地址。
三、摘要。
摘要是科研论文主要内容的简短、扼要而连贯的重述,必须将论文本身新的、最具特色的内容表达出来(重点是结果和结论)。
1、具体写法有“结构式摘要”和“非结构式摘要”两种,前者一般分成目的、方法、结果和结论四个栏目,规定250字左右;后者不分栏目,规定不超过150个字,目前国内大多数的医学、药学期刊都采用“结构式摘要”。
2、摘要具有独立性和完整性,结果要求列出主要数据及统计学显著性。
3、一般以第三人称的语气写,避免用“本文”、“我们”、“本研究”等作为文摘的开头。
四、关键词。
关键词也叫索引词,主要为了图书情报工作者编写索引,也为了读者通过关键词查阅需要的论文。
1、关键词是从论文中选出来用以表示全文主题内容的单词或术语,要求尽量使用《医学主题词表》(MeSH)中所列的规范性词(称叙词或主题词)。
2、关键词一般选取3~8个词,并标注与中文一一相对应的英文关键词。每个词之间应留有空格以区别之。
3、关键词通常位于摘要之后,引言之前。
五、引言。
引言(导言、序言)作为论文的开端,起纲领的作用,主要回答“为什么研究”这个课题。
1、引言的内容主要介绍论文的研究背景、目的、范围,简要说明研究课题的意义以及前人的主张和学术观点,已经取得的成果以及作者的意图与分析依据,包括论文拟解决的问题、研究范围和技术方案等。
2、引言应言简意赅,不要等同于文摘或成为文摘的注释。如果在正文中采用比较专业化的术语或缩写词时,最好先在引言中定义说明。
3、字数一般在300字以内。
六、正文。
正文是科研论文的主体,包括材料、方法、结果、讨论四部分内容,其中某些部分(特别是方法和结果)还需列出小标题,以使层次更加清晰。
1、材料材料是科学研究的物质基础,需要详细说明研究的对象、药品试剂、仪器设备等。
(1)如属动物实验研究,材料中需说明实验动物的名称、种类、品系、分级、数量、性别、年(月)龄、体重、健康状态、分组方法、每组的例数等;如属用药的临床观察,应说明观察对象的例数、性别、年龄、职业、病例种类、症状体征、诊断标准、分组方法、治疗措施、临床观察指标及疗效判定标准(如痊愈、显效、好转、无效的标准)等。
(2)说明受试药的来源、批号、配制方法等,中药应注明学名、来源,粗提物应标明有效部位或成分的含量和初步的质量标准,若是作者本实验室自行提取的应简述提取过程。
(3)标明主要仪器设备的生产单位、名称、型号、主要参数与精密度等。
(4)标明主要药品、试剂的名称(尽量用国际通用的化学名,不用商品名)、成分、批号、纯度、用量、生产单位、出厂日期及配制方法等。
2、方法
(1)采用已有报道的方法只要注明文献的出处即可,不必详述其过程;若为有创意的方法,要详细介绍创新之处,便于读者依此重复验证;若是对常规方法作出改进的,应具体描述改进部分及改进的理由,同时也要注明原法的文献出处。
(2)对于实验条件可变因素的控制方法(如放射免疫法的质量控制)要加以详细说明,以显示本文结果的可靠性和准确性。
(3)实验研究论文要设立阴性对照组和阳性药物对照组,前者一般采用溶剂作为对照,后者选用被公认的、确有疗效的药物,以验证实验方法的可靠性。
(4)在进行药效学和毒理学研究时,通常要设高、中、低三个剂量组,以体现出药物的量-效关系。
(5)实验设计时应考虑到每组有足够的样本数以满足统计学处理的需要,一般地说,小动物(如大、小鼠)每组至少8~10只,大动物(如狗)每组至少4~6只。同时应说明数据处理的统计学方法,统计学处理结果一般用P>0.05、P<0.05、P<0.01三档表示。
3、结果试验结果是论文的核心部分,这一部分要求将研究中所得到的各种数据进行分析、归纳,并将经统计学处理后的结果用文字或图表的形式予以表达。
(1)表格
①表格设计要清晰、简练、规范。每个表格除有栏头、表身外,还要有表序(如表1、表2、表3……)和表题,表题与表序居中写,中间空一格将两者分开。在正文中要明确提及见表x。
②表随文放,一般应列在“见表x”文字的自然段落的下面。
③表格一般采用三线表。
④表题应有自明性。若表中数据均用“均数±标准差”表示,则在表题的后面注上(±S);若表中各组的例数相等,则在表题后面统一注上(n=X),若例数不等应另加一列,分别注上各组的例数;表中计量单位若一致,可写在表题的后面,若不一致应分别写在每个栏头之下,不加括号。
⑤表内阿拉伯数字上下各行的个位数对齐,未发现的数据用“-”表示,未测或无此项用空白表示,实测结果为零用“0”表示。
(2)插图
①图包括示意图、曲线图、照片图等。
②图要求大小比例适中,粗细均匀,数字清晰,照片黑白对比分明。与表一样图也要随文字放,先见文字,后见图。
③每幅图都要有图序和图题,通常写在图的下方。图题要有自明性。
(3)结果处理时要尊重事实,要求结果中的数据精确完整、可靠无误,同时要注意不应忽视偶然发生的现象和数据。
(4)药物的临床疗效研究结果,要注意交待与药物有关的全部信息,如疗效、毒副作用及注意事项等。
4、讨论。讨论是结果的逻辑延伸,是全文的综合、判断、推理,从感性提升到理性认识的过程,也是作者充分运用自已对该领域所掌握的知识,联系本课题的实践,提出新见解、阐明新观点之处。
(1)讨论应从结果出发,紧扣题目,不宜离题发挥。具体地说应对本实验所观察到的结果,分析其理论和实践意义,能否证实有关假说的正确性,找出结果中的内在规律,与自己过去的或其他作者的结果及其理论解释进行比较,分析异同及其可能原因,根据自己的或参考别人的材料提出新见解。
(2)讨论中应该运用一分为二的观点,正确地分析和评价自己工作中可能存在的不足之处和教训,例如本研究所用方法是否有局限性等;提出今后研究方向及本结果可能的推广应用的设想,这往往对读者的思路有所启发。
(3)篇幅较长的讨论,应分项目编写,每个项目应集中论述一个中心内容,并冠以序码。讨论的中心内容应与正文各部分,特别是结果部分相呼应。讨论中不应过细重复以上各部分的数据。
(4)为体现讨论的客观性,写作时一般采用第三人称语气。
(5)讨论切忌写成文献综述,更不应简单地重复实验结果,而是从理论上有选择地对研究结果进行分析、比较、解释、推理,对主要问题,特别是本研究创新、独到之处加以充分发挥,提出新的假说,揭示有待进一步研究的问题及今后的研究方向。
七、致谢。
凡不具备前述作者资格,但对本研究作过指导、帮助的人或机构,均应加以感谢,但必须得到被致谢人的同意后才能署其姓名。致谢一般单独成段,放在正文的后面。
八、参考文献。
参考文献要求引用作者亲自阅读过的、最主要的文献,包括公开发表的出版物、专利及其他有关档案资料,内部讲义及未发表的著作不宜作为参考文献著录。
1、论文所列参考文献一般不超过10条,综述不超过30条。
2、文内标注法:著录时按文中引用文献出现的先后顺序用阿拉伯数字连续编号,直接引用作者全文的,文献序号置于作者姓氏右上角方括号内。
3、文献序号作正文叙述的直接补语时,应与正文同号的数字并排,不用上角码标注。如:实验方法见文献〔2〕或据文献〔2〕报道。
4、著录格式
(1)杂志:序号(顶格)。作者,文章名,刊物名,年、卷(期)、起始页码。如:刘康,季晖,李绍平等。三种大鼠骨质疏松模型的比较。中国骨质疏松杂志,1998,4(4):13~18
(2)书:序号(顶格)。著者,书名,版次,出版地,出版者,出版年,起讫页码。如:徐叔云,卞如濂,陈修主编。药理实验方法学第三版北京人民卫生出版社2002:911~916
5、著录规则
(1)作者:3名或少于3名者全部写出,并用逗号分隔,3名以上写前3人的姓名,后加“等”或“etal”。集体作者要写全称。
(2)刊名:中文均写全称,外文缩写可按美国医学索引《InderMedicus》的格式。
(3)版次(本):第一版不标注,其它版次用阿拉伯数著录。如“第2版”,“2nd”。
技术论文格式要求
一、技术论文正文的基本结构和要求
技术论文正文建议8000-10000字,须包括以下部分:
(一)作品难点与创新
(二)方案论证与设计
(三)原理分析与硬件电路图
(四)软件设计与流程
(五)系统测试与误差分析
(六)总结
二、技术论文正文以外应包括的其他内容
除正文以外,技术论文必须包括以下内容:论文封面、中文摘要、英文摘要、中英文关键字、目录、参考文献,以及页眉页码。
封面内容包括作品题目、参赛单位、参赛队伍名称、指导老师、参赛队员、完成时间。中文摘要500-1000字,简要说明作品的现实意义、设计思路及创新点。英文摘要与中文摘要相对应。关键词3-5个。目录包含三级标题。参考文献没有数量要求,列出写作过程中所参考的论文和书籍。
技术论文正文中的每一页都必须有页眉,页眉的内容分两行,第一行内容为“第十届中国研究生电子设计竞赛”字样,第二行内容为论文的题目。居中排列。
技术论文必须有页码,页码需放到每一页下方的右侧,编码从正文开始。
三、技术论文中图表脚注的处理
1、图题和表题
技术论文中的图表需要有图题、表题(图表的序号和名称)。图题放在图的下方,表题放在表的上方。
2、图表的序号使用
技术论文中图表的序号统一使用“图1-1”(第1章第1图),“表1-1”(第1章第1表)的形式。图和表的序号分开排列,图表的序号顺
序要在每一章重新编号,如第1章的图表从“图1-1”、“表1-1”开始,
第2章的图表从“图2-1”、“表2-1”开始。
3、图表的资料来源
图表下方应注明资料来源。表的资料来源注释应放到表的下方,图的资料来源注释应放到图题下方。
4、脚注的使用
技术论文中凡是引用和参考别人的研究成果以及有数据的地方都要用脚注注明出处。论文需使用全文连续脚注,脚注放在每一页的页面底端。脚注的具体内容应包括作者、题目、出版要素三个部分,脚注的序号统一使用“①”“②”“③”…的形式。如使用网络文章,要注明详细网址。
四、技术论文排版要求
论文封面单独占一页,目录单独占一页。论文的每一章开始必须另一起一页,每一节开始时应另起一行。正文段落和标题一律采用固定行间距20pt。
版式与字体要求
1. 封面
2. 目录
3. 正文
题目
作者
【摘要】: 用简短的语言(小于等于300字)来总结论文的主要内容,包括结论。
【前言】: 就是阐述一下背景,现状,你要的问题(最好是以案例的形式将问题呈现出来,以及你的的意义。
【经过】:
一、 详述的方向和想要达到的目的。
二、 活动安排(包括每一阶段时间安排以及每一阶段的方法(包括每一种方法想要达到的目的)。
三、 人员分工
四、 获取资料的方式
【内容】:
一、 【收集案例】:如果对象不属于同一类的话,就要用图表的形式将对象比例情况展示出来
二、【案例分析】:案例分析问题存在的原因(尤其是现状的背景下,问题依然存在的具体原因、深层次原因)
三、【问卷调查】如果有问卷调查的在此可加入调查的问题以及调查结果。
四、【结果】总结的结果,可以用图表形式
【结论】:
根据的结果提出自己的观点,看法,结论。
参考文献:
注明资料的出处
1网络资料,注明:文章名,作者,网站名称
2 书籍资料:注明: 书名,作者,出版社,出版日期,页数。
3 报刊资料,注明,文章名,作者,报刊名字,期
小论文格式要求
一、学生要严格按照论文题目、作者及学号、单位、指导教师、摘要、关键词、正文、主要参考文献。
二、字体、字号规定如下:题目(黑体小2号居中);作者、单位(宋体4号);指导教师及其姓名(楷体4号间隔3空);摘要、关键词(黑体5号);摘要内容、关键词内容(楷体5号);参考文献(黑体5号)、参考文献内容(宋体5号);正文内容(宋体小4号),一级标题(黑体小4号),二级标题(小标宋小4号)。
三、论文的标题层次采用阿拉伯数字分级编号。如:一级标题1,2级标题1.1,三级标题1.1.1。编号左起顶格书写。
四、中文摘要150字左右,关键词3-7个。
五、参考文献只列文中引用的公开发表的文献(未公开出版的用脚注说明),按文中出现的先后次序列出。其排列格式如下:
专著:作者名(包括前三位)、书名、出版社、出版年。
论文集:作者名(包括前三位)、文题、编著者、书名、出版社、出版年。 刊物:作者名(包括前三位)、文名、刊物名称、期(卷)。
如:
[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志,1992,12(2):146-154.
[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.
[3] 孟伯秦. 内插空间理论及其应用.内蒙古人民出版社, 2001, 183-192.
六、用蒙文撰写的论文的题目、单位、作者、指导教师、摘要、关键词必须用蒙文汉两种语言表达。
七、毕业设计(创作)要求录入作品名称(题目)、单位、姓名、指导教师、毕业设计报告书。
小论文格式模板
内蒙古自治区科技人才地域分布差异分析
xxx 学号
数学科学学院 数学与应用数学专业 20xx级汉班
指导教师 xxx
摘 要 科技人才是经济发展、社会进步、文化繁荣的先决条件和制约因素,本文根据内蒙古自治区xxxx年科技人才调查统计的数据,对内蒙古地区人才分布现状、差异及形成差异的原因和今后发展对策等方面进行了初步探讨.
关键词 内蒙古自治区、科技人才、地域差异、人才优势
内蒙古自治区位于祖国的北疆,地文人稀,交通不便,自然条件和自然资源复杂多样,在这片土地上设有十二个盟市级行政单位,其中含有四个市八个盟,首府是呼和浩特[1].
1内蒙古科技人才地域分布差异
1.1 内蒙古各盟(市)科技人才地域分布差异
1.1.1 人才数量差异
内蒙古自治区自然资源丰富,但缺乏与之相适应的人才资源. 因此人才资源急需解决[2]. 解决的办法就是引进人才的同时,切实加强本地区的人才开发培养工作.
1.1.2 人才地域结构差异
(正文部分略)
2内蒙古科技人才发展战略
一方面要适当增加物质力量对科技事业的支持,加强教育投资,发送办学条件,抓好师资队伍建设,提高教师待遇,减少教育人才外流;另一方面要深化教育体制改革,提高教育质量.
本文在写作过程中得到了XXX老师多次精心指导,在此表示感谢.(本行可以不写)
参考文献:
[1] 盛宝怀. Ba空间中Kantorovich算子的饱和性. 数学杂志, 1992, 12(2): 146-154.
[2] Wu Garidi. The Jackson theorem in Ba spaces. Approx. theory & Appl.,1996,12(2):60-69.
[3] 孟伯秦. 内插空间理论及其应用.呼和浩特:内蒙古人民出版社, 2001, 183-192.
一、学位论文的基本要求
硕士学位论文,要求对所研究的课题有新见解或新成果,并对本学科发展或经济建设、社会进步有一定意义,表明作者掌握坚实的基础理论和系统的学科知识,具有从事学术研究或担负专门技术工作的能力。学位论文应在导师指导下,由硕士研究生本人独立完成。
博士学位论文,要求对所研究的课题在材料、角度、观点、方法、理论等方面或某方面有创新性成果,并对学术发展、经济建设和社会进步有较重要的意义,表明作者掌握坚实宽广的基础理论和系统深入的学科知识,具有独立从事学术研究的能力。学位论文应在导师指导下,由博士研究生本人独立完成。
学位论文应当用规范汉字进行撰写,除古汉语研究中涉及的古文字和参考文献中引用的外文文献之外,均采用简体中文撰写。
学位论文必须是一篇[或一组相关论文组成的.一篇]系统完整的、有创造性的学术论文。
不符合上述要求的,一律不接受其学位论文答辩申请。
二、学位论文的一般格式
学位论文一般应依次包括下述几部分:
1. 封面(参见附件1)。
2. 版权声明。
3. 题目:应准确概括整个论文的核心内容,简明扼要,让人一目了然。一般不宜超过20个字。
4. 中文摘要:内容摘要要求在3000字以内,应简要说明本论文的目的、内容、方法、成果和结论。要突出论文的创新之处。语言力求精炼、准确。在本页的最下方另起一行,注明本文的关键词(3-5个)。
5. 英文摘要:英文摘要上方应有题目,内容与中文摘要相同。在英文题目下面第一行写研究生姓名,专业名称用括弧括起置于姓名之后,研究生姓名下面一行写导师姓名,格式为Directed by...。最下方一行为英文关键词(Keywords 3-5个)。参见附件2。
6. 目录:既是论文的提纲,也是论文组成部分的小标题。
7. 序言(或序论、导论):内容应包括本课题对学术发展、经济建设、社会进步的理论意义和现实意义,国内外相关研究成果述评,本论文所要解决的问题,论文运用的主要理论和方法、基本思路和论文结构等。
8. 正文:是学位论文的主体。根据学科专业特点和选题情况,可以有不同的写作方式。但必须言之成理,论据可靠,严格遵循本学科国际通行的学术规范。
9.注释:可采用脚注或尾注的方式,按照本学科国内外通行的范式,逐一注明本文引用或参考、借用的资料数据出处及他人的研究成果和观点,严禁抄袭剽窃。
10. 结论:论文结论要明确、精炼、完整、准确,突出自己的创造性成果或新见解。应严格区分本人研究成果与他人科研成果的界限。
11. 参考文献:按不同学科论文的引用规范,列于文末(通篇正文之后)。外文用原文,不必译成中文(参见附件3)。
文献是期刊时,一般书写格式为:作者、篇名、期刊名、年月、卷号、期数、页码。
文献是图书时,一般书写格式为:作者、书名、出版单位、年月、版次、页码。
12. 附录:包括正文内不便列入的公式推导,便于读者加深理解的辅助性数据和图表,论文使用的符号意义,缩略语,程序全文和有关说明,其它对正文的必要补充等。
13. 作者的致谢、后记或说明等一律列于论文末尾。
14. 学位论文原创性声明和授权使用说明(导师和作者本人均需签名)。
15. 封底。
摘要
是对论文基本内容的简要陈述,可以说是论文的缩影。它在论文的标题和全文之间,起着桥梁的作用。读者是否阅读全文,一般在他阅读完摘要以后就能决定了。此外,摘要也能给文摘者提供方便。
摘要的种类,主要有指示性摘要和报道性摘要两种。指示性摘要只叙述论文内容的精华,不涉及研究方法、结果和结论,其字数一般只有30~50字,少的甚至仅有十几个字。报道性摘要一般包括研究课题的目的、范围、重要性,所采用的理论、方法,得到的结果、结论等,其中,结果、结论是重点。报道性摘要的篇幅,一般为正文文字的2~5%。笔者建议,期刊论文中的中文摘要不要超过200个汉字,英文摘要不要超过100个实词。
对报道性摘要的主要要求,是简短、精练、完整。所谓完整,是指摘要应具有独立性和自含性,即其内容应包含与原文等量的主要信息,可以独立成篇,可供文摘人员直接采用。
摘要应当用第三人称写,不要用传统的本文这样的第一人称叙述;一般情况下,摘要不要分段;摘要要用规范的术语,一般不宜出现插图、表格、数学公式及参考文献序号等。
关键词
关键词是最具有实质意义的检索语言,其主要作用就在于方便检索。因此,应当选取在论文中起关键作用的、最能说明内容实质的单词、短语或术语作为关键词。关键词的数量一般为3~8个,它们之间仅仅是一种简单的组合,不必要考虑语法结构,也不必要表达一个完整的意思。
经过规范化处理的关键词,称为叙词。目前有少数杂志要求采用叙词,如《机械工程学报》、《农业机械学报》等。叙词的选择不如关键词来得方便,需要查阅相应的叙词表。与机械工程科学相关的叙词工具书是《机械工程叙词表》。
对于论文标题与关键词选取的关系,有两种截然相反的观点。一种观点认为标题中的词与关键词重复是一种浪费,另一种观点认为标题中应尽可能多地包含关键词。笔者倾向于后一种观点。因为标题要高度概括论文的内容,关键词应对说明论文的内容实质起关键作用。所以,如果关键词选择精当的话,一个好的论文标题中存在重复它们的词几乎是不可避免的;反之亦然。
原文:20.9 MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、$ l m I. `5 L* eSurface finish and integrity of the machined part;2、; u: I% F/ b$ t( O" ?' I2 MTool life obtained;3、1 F. }: a% W1 W5 R l7 @* q; jForce and power requirements;4、. p) @0 }5 c* S+ I: IChip control.Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.20.9.1 Machinability Of Steels6 }" `- x) E* V* T+ DBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.Resulfurized and Rephosphorized steels., m# n- K R; @Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.20.9.2 Machinability of Various Other MetalsAluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.20.9.3 Machinability of Various Materials; n+ {0 C# N' t: K& D5 Y7 nGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, andproper support of the workpiece. Tools should be sharp.External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from % Q6 X5 q6 [ C$ F9 Ito / C+ z W( L4 N& I$ }( to ), and then cooled slowly and uniformly to room temperature.Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.20.9.4 Thermally Assisted MachiningMetals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.SUMMARY' k4 F( E u# |: n6 i6 hMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.因文章太长,译文请点链接
中国是世界上机械发展最早的国家之一。中国的机械工程技术不但历史悠久,而且成就十分辉煌,不仅对中国的物质文化和社会经济的发展起到了重要的促进作用,而且对世界技术文明的进步做出了重大贡献.传统机械方面,我国在很长一段时期内都领先于世界。到了近代由于特别是从18世纪初到19世纪40年代,由于经济社会等诸多原因,我国的机械行业发展停滞不前,在这100多年的时间里正是西方资产阶级政治革命和产业革命时期,机械科学技术飞速发展,远远超过了中国的水平。这样,中国机械的发展水平与西方的差距急剧拉大,到十九世纪中期已经落后西方一百多年。新中国建立后特别是近三十年来,我国的机械科学技术发展速度很快。向机械产品大型化,精密化、自动化和成套化的趋势发展。在有些方面已经达到或超过了世界先进水平。总的来说,就目前而言中国机械科学技术的成就是巨大的,发展速度之快,水平之高也是前所未有的。这一时期还没有结束,我国的机械科学技术还将向更高的水平发展。只要我们能够采取正确的方针、政策、用好科技发展规律并勇于创新,我国的机械工业和机械科技一定能够振兴,重新引领世界机械工业发展潮流。就小型夯实机械而言:上世纪60年代以前,我国小型夯实机械非常缺乏,很多小型场地的夯实基本上采用人工夯实。上世纪60年代初期,长沙建设机械研究所与北京建筑工程学院等单位合作,在群众性技术革新成果的基础上总结发明了具有中国特色的蛙式夯实机,1962年获国家科技发明奖。蛙式夯实机结构简单,维修、使用方便,很快成为我国60年代夯实机械的主导产品。据不完全统计蛙式夯实机累计产量达到50000多台,在我国经济建设中发挥了重要作用。70年代以后,蛙式夯实机逐渐被性能更先进的振动冲击夯和振动平板夯所替代,目前蛙式夯实机已经很少,基本被淘汰。1964年,长沙建设机械研究所开发了HB120型内燃式夯实机,开始由上海工程机械厂生产,后来主要由津市洞庭工程机械厂生产,年产量200台左右。80年代,内燃式夯实机产品质量有较大提高,曾出口东南亚和非洲地区。90年代以后,内燃式夯实机产销售量也在逐渐减少,目前只有少数小型民营企业生产。1977年,长沙建设机械研究所和柳州市建筑机械厂开发了我国第一台HZR250型和HZR70型振动平板夯,这两种产品分别于1979 年和1982年通过了由建设部组织的鉴定。随后义乌建筑机械厂、四平建筑机械厂、安阳振动器厂、津市洞庭工程机械厂等多家企业都开始生产振动平板夯。1986年长沙建设机械研究所又开发了较大的HZR450型振动平板夯。上世纪90年代以后,振动平板夯在我国有了较快的发展,产品品种、规格和生产企业增多,国外的振动平板夯陆续进入中国市场。1983年,长沙建设机械研究所和湖北振动器厂联合开发了我国第一台HZR70型振动冲击夯,1984年通过了由建设部组织的鉴定,1985年获建设部科技进步三等奖。由于振动冲击夯具有压实效果好、生产率高、体积和重量小、轻便灵活等突出特点,深受用户欢迎,得到了迅速的推广使用,并很快发展到资江机器厂、新乡第三机床厂和津市洞庭工程机械厂等几十家企业生产。振动冲击夯虽然比振动平板夯开发晚,但发展速度、产销量和使用广泛性比振动平板夯大得多,目前已成为我国夯实机械中产销量最大的主导产品。上世纪90年代以后,国外的振动平板夯陆续进入中国市场。振动冲击夯和振动平板夯在我国的成功开发,不仅为我国建设施工部门提供了性能先进的夯实机械,取得了良好的经济效益和社会效益,而且使我国夯实机械技术向前跨进了一大步,缩短了与世界先进水平的差距,促进了我国压实机械的发展。就机械加工而言:热加工 铸造 据考古发现,在北京平谷、昌平、房山等处曾出土了公元前16世纪(商代)的青铜礼器。 明永乐年间(1403~1424年),北京制造出享誉世界的明永乐大铜钟(46.5吨)和钟楼大铜钟(63吨)及铁钟(25吨),采用分炉熔化、地坑造型和陶范法铸造。 20世纪50年代以前,北京在铸造上采用粘土砂手工造型。1955年,北京第一机床厂开始采用漏模造型、双面模型型板及铁型板和标准砂箱造型。1965年,开始采用塑料模型。 1980 年,北京市机电研究院与北京玛钢厂研制成功工频无芯塞杆底注式保温浇注电炉。1982年,该院与北京机床铸造二厂研究成功冲天炉风口吹氧技术。 1985~1988年,北京机床研究所试验成功浮动端面密封环的压力铸造工艺。 锻压 1959年,北京第二通用机械厂(后改名北京重型机器厂)建成2500吨水压机。1971年,该厂制造出6000吨水压机,这是当时北京最大的锻压设备。 1968~1979年,北京起重机器厂先后采用300吨油压机和2000吨油压机制造出起重机吊臂和大型覆盖件。 80年代,北京市机电研究院和北京市模具中心研制出一系列高精度多工位冲裁模具,接近或达到进口模具水平,改变了北京精密冲裁模具依赖进口的局面。 热处理 1949年前,北京已采用电炉、盐溶炉、热电偶等手段进行零件退火、回火、淬火、正火、调质、渗碳等热处理。 1956年,北京第一机床厂开始采用高频感应淬火。1961年,北京第二机床厂开始采用气体氮化淬火。1969年,北京量具刃具厂开始采用光亮淬火。 1978年,北京机床研究所研究完成机床导轨表面接触淬火工艺及设备、淬火质量检查技术条件的研究。1979年,铁道科学研究院和中国科学院力学研究所等合作完成大功率柴油机缸套表面的激光改性处理的研究。 1979年,北京市机电研究院研制成功千瓦级二氧化碳激光器,并于80年代初分别应用于汽缸套和邮票印刷设备的激光热处理。其中,清华大学、北京市机电研究院、北京邮票厂共同完成邮票厂七色机打孔器表面激光强化研究。 1984~1990年,北京市热处理研究所研究成功真空热处理、气体渗碳微机控制技术(与北京航空航天大学合作)、稀土软氮化、粉末冶金制品表面强化、煤油加甲醇小滴量法微机可控渗碳、固体渗硼、渗碳过程微机辅助工艺设计及跟踪控制系统等热处理新技术,并应用于生产。 焊接与切割 1949年,北京已有气焊、电弧焊及氧乙炔火焰切割等手工作业。 1963年,北京金属结构厂与一机部机械科学研究院合作开发出钨极氩弧焊,并实现了氮气等离子切割不锈钢。1964年,用直流钨极氩弧焊及焊丝合金化技术解决了核工业用倾斜式电解糟纯镍焊接。 1966年,北京金属结构厂开发出了使被焊球体旋转的埋弧自动焊。1968年,该厂开始以液化石油气代替乙炔切割。 80年代初,清华大学发明了新型MIG焊接电弧控制法,在控制电弧技术上取得突破。 80年代初,北京城建设计院等完成液化石油气移动式气压焊轨技术的研究和应用。 1990年,北京金属结构厂开始采用数控精密切割和具有光电跟踪及数控寻踪读入自动编程的大功率等离子切割技术。可见,我国机械发展在近代发展其迅速。China is the world's first national machinery development. Chinese mechanical engineering technology not only has a long history and splendid achievements in Chinese is not only the material culture and social economic development plays an important role in the world, and to promote the progress of civilization, technology has made great contribution to Chinese traditional machine. And in a long period ahead in the world. In modern times, especially from the early 18th century, due to the nineteen forties, due to the economic and social reasons, such as the China machinery industry, stagnation, in the 100 years is western bourgeois political revolution and industrial revolution, mechanical science and technology is developing rapidly, and far more than the level of China. So, China mechanical development level and the western gap widens, sharply to the 19th century middle behind western one hundred years.After the founding of new China, especially in the past 30 years, our country's mechanical science and technology development speed. To the mechanical product large-scale, precision, automation and discusses the trend of development. In some aspects has reached or exceeded the world advanced level. Generally speaking, currently China mechanical science and technology achievement is huge, developing fast, high level of unprecedented. In this period, China has no end of mechanical science and technology will develop to a higher level. As long as we can adopt the correct policy, with good technology development and innovation, our machinery industry and mechanical technology can revitalize, leading to the development trend of mechanical industry.Just small ramming machinery:In the 1960s, China mechanical very small tamp lack, many small venues ramming basically USES artificial ramming.Early 1960s, changsha construction machinery institute and Beijing architectural engineering institute, etc., the technical innovation achievements in mass on the basis of summing up Chinese characteristic invented the breaststroke ramming machine, 1962 exceeded national science and technology. The breaststroke ramming machine structure is simple, easy to use and maintenance in 1960s, soon became the dominant products to consolidate machinery. According to not complete count breaststroke tamp cumulative yield reached more than 50,000 machine, in the economic development of our country has played an important role. Since 1970's, the breaststroke ramming machine was gradually more advanced performance of vibration shock ram and vibrating plate ram, now replaced by laying machine has rarely breaststroke, basically be eliminated.In 1964, changsha construction machinery institute HB120 developed movable type, type of Shanghai began laying machine, engineering machine production mainly by tianjin municipal later, annual production engineering machinery dongting about 200. In the 1980s, movable type ramming machine product quality has increased greatly, have exported to southeast Asia and Africa. Since 1990s, internal-combustion type ramming machine production sales, and gradually decreased in only a few small private enterprise production.In 1977, changsha construction machinery factory buildings and developed in liuzhou HZR250 type and the HZR70 type vibrating plate ram, these two kinds of products in 1979 and 1982 passed by the ministry of construction of the organization. Then yiwu building construction machinery factory, siping, anyang vibrators factory, tianjin municipal engineering machinery dongting and other enterprises have started producing vibrating plate ram. In 1986, changsha construction machinery research and develop a larger HZR450 type of vibrating plate ram. Since 1990s, vibrating plate ram in our country has developed very quickly, varieties of products, specifications and increase production enterprises, foreign vibrating plate ram gradually to enter the Chinese market.In 1983, changsha construction machinery institute and the joint development of hubei vibration in the first HZR70 type vibration shock ramming, 1984, passed by the ministry of construction, organization construction technology progress in 1985 won prizes. Due to the vibration impact compaction result has good ramming, productivity, high volume and weight of small, lightweight flexible outstanding characteristics, deeply user etc, obtained a rapid promotion, and soon ZiJiang development to the factory, xinxiang municipal engineering machine tool plant and tianjin dozens of dongting production factory etc. Vibration shock ramming although than vibrating plate ram, but later development speed of development, production and use of extensive than vibrating plate ram, has become the largest in China in the ramming machinery products. Since 1990s, foreign vibrating plate ram gradually to enter the Chinese market.Vibration shock ramming and vibrating plate ram the successful development in our country, not only for our construction department provides advanced performance of mechanical, laying have achieved good economic benefit and social benefit, and make our ramming mechanical technology into a big step forward, shorten the gap with the advanced world level, promoting the development of compaction machine.The mechanical processing:According to the archaeological discovery, hot-working casting in Beijing pinggu, changping and so have proved that the 16th century BC shang dynasty (bronze objects. Ming yongle (1403-1424 years), Beijing produce world-renowned Ming yongle great 3-ton bell made (46.5 tons) and tower (63 tons of great 3-ton bell made of iron clock (25) and the furnace of melting, pit TaoFan model and method of casting. In the 1950s, Beijing based on clay sand castings in manual. In 1955, Beijing first machine tool plant began using leakage mould modelling, double-sided model and iron plate type plate and standard sand box modelling. In 1965, start using plastic model. In 1980, the institute and Beijing municipal electrical factory has successfully developed line frequency coreless bathroom plug stem bottom note type electric insulation casting. In 1982, hospital and Beijing the casting machine research cupola tuyere oxygen blowing technology. 1985-1988, Beijing institute of machine of floating end face seal ring by die successful test pressure casting process.In 1959, Beijing second metalforming machinery general factory changed (Beijing) built 2500 ton heavy-duty hydraulic press. In 1971, the factory produced 6,000 tons, which is then Beijing hydrtesting biggest metalforming equipment. 1968-1979, Beijing hoisting machine factory has 300 tons of using hydraulic press 2000 tons and create crane and large panel. In the 1980s, Beijing institute of electrical and developed a series of Beijing mould centre high-precision cutting die, the multistage close to or to import mould level, changed Beijing precision punching moulds dependence on imports.Before 1949, Beijing has heat treatment furnace, salt dissolved by thermocouples means furnace, quenching and tempering, parts of annealing, normalizing, quenching and tempering, carburizing and etc. In 1956, Beijing first began using high-frequency quenching machine tool plant. In 1961, the Beijing second machine tool plant began using gas nitriding quenching. In 1969, the following enterprise by Beijing gage start light quenching. In 1978, the complete machine tool research institute of Beijing guide surface contact quenching process and equipment, quenching condition of quality inspection. In 1979, scientific research institute of China academy of railway and mechanical institute of high-power diesel engine cylinder collaboration of surface modification of laser. In 1979, Beijing institute of electrical carbon dioxide laser is developed, and the kilowatt in early 1980s respectively applied in cylinder and stamp printing equipments of laser treatment. Among them, tsinghua university, Beijing, Beijing institute of electrical YouPiaoChang jointly completed YouPiaoChang seven color machine DaKongQi laser surface strengthening research. From 1984 to 1990, Beijing institute of vacuum heat treatment research, gas carburizing microcomputer control technology (Beijing university of aeronautics &astronautics and cooperation), rare earth soft nitriding, powder metallurgy products surface strengthening, kerosene and methanol small drops of microcomputer control method of carburizing, solid boriding and carburizing process computer aided process planning and tracking control system, and the application of new technology heat in production. Welding and cutting in 1949, Beijing has geo-drilling, electric welding and cutting etc oxyacetylene flame manual operation. In 1963, Beijing metal structure and YiJiBu mechanical science research cooperation to develop tungsten argon arc welding, and realize the nitrogen plasma cutting stainless steel. In 1964, the use of dc argon arc welding and tungsten wire alloying technology solved by tilting electrolysis industry worse pure nickel welding. In 1966, Beijing metal structure factory developed by rotating sphere of the submerged arc welding automatic welding. In 1968, the plant began to liquefied petroleum gas (LPG) instead of acetylene cutting. In the early 1980s, tsinghua university invented new MIG welding arc arc technology in control, control a breakthrough. In the early 1980s, the Beijing urban construction design completed liquefied petroleum gas (LPG) mobile pneumatic rail welding technology research and application. In 1990, Beijing metal structure factory to adopt CNC precision cutting and with photo-electricity tracking and CNC pursuit of high input automatic programming technology plasma cutting.Visible, China mechanical development in modern development of its rapid.
231 浏览 3 回答
134 浏览 4 回答
148 浏览 6 回答
223 浏览 3 回答
115 浏览 2 回答
219 浏览 3 回答
314 浏览 3 回答
356 浏览 4 回答
288 浏览 3 回答
245 浏览 3 回答
311 浏览 6 回答
112 浏览 4 回答
155 浏览 3 回答
140 浏览 4 回答
175 浏览 3 回答