泰勒公式泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。公式应用实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。泰勒展开式的重要性体现在以下三个方面:幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。泰勒级数可以用来近似计算函数的值。
8个常用泰勒公式如下:
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。
泰勒公式的应用
(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。
(2)应用泰勒公式可以证明区间上的函数等式或不等式。
(3)应用泰勒公式可以进行更加精密的近似计算。
(4)应用泰勒公式可以求解一些极限。
(5)应用泰勒公式可以计算高阶导数的数值。
以上内容参考 百度百科—泰勒公式
泰勒公式的应用一般有三个方面:1、利用泰勒式做代换求函数的极限.这一点应用最广泛!一些等价无穷小也可以使用泰勒公式求出.2、利用泰勒式证明一些等式或者不等式.这一点应用的也非常多,在很多大型证明题中都使用过.泰勒公式可以灵活选择在某点,效果也很好.3、应用拉格朗日余项,可以估值,求近似值.当然还有挺多,你看看这篇文章吧,泰勒公式的应用讲的非常全面,这里地方太小,也无法全面描述。
195 浏览 2 回答
350 浏览 3 回答
259 浏览 2 回答
129 浏览 6 回答
186 浏览 2 回答
261 浏览 4 回答
135 浏览 3 回答
264 浏览 3 回答
160 浏览 4 回答
129 浏览 3 回答
140 浏览 3 回答
311 浏览 3 回答
340 浏览 3 回答
231 浏览 3 回答
140 浏览 2 回答
198 浏览 3 回答
162 浏览 5 回答
116 浏览 6 回答
102 浏览 3 回答
123 浏览 2 回答
301 浏览 7 回答
300 浏览 4 回答
91 浏览 4 回答
268 浏览 2 回答
207 浏览 4 回答