一、提公因式法
提公因式法是指当一个多项式的各项都有公因式时,把这个公因式提出来,将多项式化成两个或多个因式乘积的形式。
解题思路:仔细观察这个多项式,会发现加号左右两边都有公因式x,则可以把x提出来,所以原题可等于x(x+6)
二、公式法:
公式法主要是指平方差公式,完全平方公式,立方差公式,立方和公式。
解题思路:分析对比平方差公式可先提取xy后,出现了一个平方差公式,直接用平方差公式即可解决对比完全平方公式可先提取ab。
三、十字相乘:
十字相乘法口诀:
解题技巧:把x的平方分成x乘x,8分成-2乘-4,然后交叉相乘-4x-2x=-6x,正好等于中间的数,符合,因此写成(x-2)(x-6)
四、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
五、换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元。
六、求根公式法
令多项式f(x)=0,求出其根为x1,x,x3,……xn,
则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)
七、分组分解法
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难
练习题: 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。