中科院量子信息重点实验室教授郭国平、肖明与合作者成功实现了半导体量子点体系的两个电荷量子比特的控制非逻辑门,成果于7月17日发表在《自然—通讯》上 。中科院量子信息重点实验室郭国平教授半导体量子芯片研究组及其合作者又破世界纪录,通过实验成功实现世界上最快速量子逻辑门操作,取得半导体量子芯片研究的重要突破。 传统砷化镓半导体量子点量子比特研究 半导体量子点由于其良好的扩展性和集成性是实现固态量子计算的最有力候选者。由单电子在双量子点中的左右量子点的占据态编码的电荷量子比特有众多的优越性,成为量子计算研究最热门的研究方向。首先,电荷量子比特门操作速度可以较大范围的调节,达到GHz的频率;其次,电荷量子比特的制备、操控和读取可以用全电学操控来完成;最后,电子电荷自由度作为量子比特可以与现有信息处理技术兼容,并且可以利用先进的半导体工艺技术完成大面积的扩展和集成。一个单量子比特逻辑门操控和一个两量子比特受控非门可以组合任意一个普适量子逻辑门操控,而实现普适量子逻辑门操控是实现量子信息处理过程的最关键技术。国际上主要有美国哈佛大学、威斯康星大学等集中在电子电荷量子比特的量子计算研究,我们研究团队在2013年成功实现了半导体超快普适单比特量子逻辑门(Nat. Commun. 4:1401 (2013),经过两年的摸索和积累,研究组在2015年成功实现两个电荷量子比特的控制非门,其操控最短在200皮秒以内完成。相对于国际上目前电子自旋两量子比特的最高水平,新的半导体两量子比特的操控速度提高了数百倍。单比特和两比特的量子逻辑门的完成,表明量子计算所需的所有基本量子逻辑门都可以在半导体上通过全电控制方式实现。这种方式具有操控方便、速度超快、可集成化、并兼容传统半导体电子技术等重要优点,是进一步研制实用化半导体量子计算的坚实基础。图示为单量子比特操控和两量子比特操控实验样品和实验测量图。新型非掺杂砷化镓和硅锗异质结量子比特的制备和操控研究传统的砷化镓量子点是基于掺杂的砷化镓铝异质结中的二维电子气上形成的。由于掺杂不可避免的削弱电子电荷和自旋的稳定性,从而增加了量子比特受到掺杂电子电荷噪声的影响,缩短了量子比特的弛豫时间,加快了量子比特的的退相干过程。以解决上述问题为目标,分别采用非掺杂GaAs和SiGe异质结进行新型双层结构量子点器件的设计和制备,减小电荷噪声的影响,排除核自旋的影响,延长量子比特的退相干时间,实现单电子电荷和自旋量子比特的制备、测量和操控。新型量子点器件是继承传统量子点器件可集成性等优势的同时,又具有高迁移率、强稳定性的增强型量子点研究体系,是实现多量子比特耦合的基础。基于非掺杂砷化镓异质结的电荷量子比特和基于非掺杂SiGe异质结的电子自旋量子比特研究都是相关研究中的新兴热门领域,特别是基于SiGe量子点的自旋量子比特由于其没有核自旋,具有较长的量子退相干时间。我们研究团队成功制备了两种材料的双量子点器件,完成了砷化镓量子点的表征和电子弛豫时间以及退相干时间的测量,正在开展进一步的实验研究。图示为新型非掺杂砷化镓和硅锗双量子点样品的结构图和实验测量。半导体量子点与超导腔耦合的复合量子比特以及多量子比特扩展基于半导体量子点的量子计算方案都是利用相邻量子点量子比特之间的交换相互作用来实现多比特的量子逻辑门操作,非近邻量子比特之间的逻辑门操作需要通过一系列近邻门操作组合完成,这大大增加了计算过程中逻辑门操作的数量和难度。最近有些理论工作提出借用超导量子比特系统中的超导传输谐振腔等概念来实现半导体量子点非近邻量子比特耦合的量子数据总线,但是相应的实验还处于起步和摸索阶段。不过半导体量子点和超导谐振腔为我们提供一种崭新的物理体系,同时很好的兼容了传统半导体产业各种微纳米工艺和技术,在未来的信息处理器中具有广阔的应用前景。我们团队提出了最早的非强耦合条件下的超导传输谐振腔与量子点量子计算理论方案(Phys. Rev. Lett. 101 , 230501 (2008).),大大降低了实验的要求和难度。我们研究团队在半导体量子点的制备和操控方面积累了大量的实验经验和技术,对超导谐振腔体的制备和表征也掌握关键的工艺技术。经过几年研究积累,完成了超导谐振腔与石墨烯双量子点以及超导谐振腔与两个石墨烯双量子点实现远程耦合的实验研究,以此为基础着力于解决半导体量子点多比特之间的耦合问题,具有很大的理论和实验挑战性。我们目前的这些前期工作已属于世界研究前列,结合已开展的半导体量子点处理单元和测量单元研究,集中推进基于固态量子比特的多量子比特扩展研究。基于新型二维材料(Graphene,TMDS)体系的量子器件制备和量子物理研究二维材料体系由于其独特的结构和性质优越性,被科学界大量研究,特别是单层石墨烯材料,以及最近掀起一波研究热潮的TMD材料体系。我们研究团队在实验室内设计制备了多种石墨烯量子点元器件,2009年在国际上首先制备出石墨烯量子点+单电子测量器的芯片( Applied. Phys. Letters 97, 262113 (2010)),特别是制备出了世界上第一块并联的石墨烯双量子点样品( Applied. Phys. Letters 99, 112117 (2011)),开发了集成测量读出系统的全石墨单电子晶体管;设计了石墨烯量子点元器件的全电学操控模式,掌握了精细调节电极控制量子点器件上电子状态的规律和方法;另外我们在国际上率先提出了石墨烯量子点量子计算的完整方案等;我们设计的石墨烯结构和尺寸等方面的优势在国际上也居于比较前列的位置。近期我们也开展了关于TMDs材料方面的量子器件研究,取得了一些重要的实验结果。“量子芯片”是未来量子计算机的“大脑”。 2016年2月,国际权威杂志《物理评论快报》发表了中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室郭国平研究组在量子芯片开发领域的一项重要进展。该成果由郭国平研究组及合作者完成,首次在砷化镓半导体量子芯片中成功实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特。研究组利用半导体量子点的多电子态轨道的非对称特性,首次在砷化镓半导体系统中实现了轨道杂化的新型量子比特,巧妙地将电荷量子比特超快特性与自旋量子比特的长相干特性融为一体,实现了“鱼”和“熊掌”的兼得。实验结果表明,该新型量子比特在超快操控速度方面与电荷量子比特类似,而其量子相干性方面,却比一般电荷编码量子比特提高近十倍。同时,该新型多电子轨道杂化实现量子比特编码和调控的方式具有很强的通用性,对探索半导体中极性声子和压电效应对量子相干特性的影响提供了新思路。
编译 | 未玖
Science , 06 AUGUST 2021, VOL 373, ISSUE 6555
《科学》 2021年8月6日,第373卷,6555期
物理学 Physics
Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals
二维捕获离子晶体对位移和电场的量子增强传感
作者:Kevin A. Gilmore, Matthew Affolter, Robert J. Lewis-Swan, Diego Barberena, Elena Jordan, Ana Maria Rey.
链接:
摘要
完全可控的超冷原子系统正在为量子传感创造机会,但通过利用纠缠展示有价值应用中的量子优势仍然是一项具有挑战性的任务。
研究组实现了一个多体量子增强传感器,使用约150个捕获离子的晶体来探测位移和电场。晶体的质心振动模式作为高Q机械振荡器,集体电子自旋作为测量装置。
通过纠缠振荡器和集体自旋,并通过多体回波控制相干动力学,位移被映射为自旋旋转,同时避免了量子反作用和热噪声。
研究组实现了低于标准量子极限 分贝的位移灵敏度,以及在1秒内测量240 10纳伏/米的电场灵敏度。适当改进后应该能够利用捕获离子来寻找暗物质。
Abstract
Fully controllable ultracold atomic systems are creating opportunities for quantum sensing, yet demonstrating a quantum advantage in useful applications by harnessing entanglement remains a challenging task. Here, we realize a many-body quantum-enhanced sensor to detect displacements and electric fields using a crystal of ~150 trapped ions. The center-of-mass vibrational mode of the crystal serves as a high-Q mechanical oscillator, and the collective electronic spin serves as the measurement device. By entangling the oscillator and collective spin and controlling the coherent dynamics via a many-body echo, a displacement is mapped into a spin rotation while avoiding quantum back-action and thermal noise. We achieve a sensitivity to displacements of decibels below the standard quantum limit and a sensitivity for measuring electric fields of 240 10 nanovolts per meter in 1 second. Feasible improvements should enable the use of trapped ions in searches for dark matter.
Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits
埃级别狭缝离子输运中的新兴记忆和电压尖峰模型
作者:Paul Robin, Nikita Kavokine, Lydéric Bocquet.
链接:
摘要
纳米流体学的最新进展使水能够限制在单个分子层内。这种单分子层电解质有望通过离子传输的分子控制实现生物激发功能。然而,人们对这些体系中的离子动力学的了解仍然很少。
研究组发展了一个由分子动力学模拟支持的分析理论,该理论预测了离子输运在准二维狭缝中的强非线性效应。
研究组发现,在电场作用下,离子聚集成细长的团簇,其缓慢的动力学行为导致滞后传导。这种现象被称为忆阻效应,可以用来构建基本神经元。
作为概念证明,研究组对两个纳米流体狭缝进行了分子模拟,重现了霍奇金-赫胥黎模型,并观察了具有神经形态活动特征的电压尖峰自发发射。
Abstract
Recent advances in nanofluidics have enabled the confinement of water down to a single molecular layer. Such monolayer electrolytes show promise in achieving bioinspired functionalities through molecular control of ion transport. However, the understanding of ion dynamics in these systems is still scarce. Here, we develop an analytical theory, backed up by molecular dynamics simulations, that predicts strongly nonlinear effects in ion transport across quasi–two-dimensional slits. We show that under an electric field, ions assemble into elongated clusters, whose slow dynamics result in hysteretic conduction. This phenomenon, known as the memristor effect, can be harnessed to build an elementary neuron. As a proof of concept, we carry out molecular simulations of two nanofluidic slits that reproduce the Hodgkin-Huxley model and observe spontaneous emission of voltage spikes characteristic of neuromorphic activity.
材料科学 Materials Science
Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al–Mg alloys
施瓦茨晶体结构抑制过饱和铝镁合金中的原子扩散
作者:W. Xu, B. Zhang, X. Y. Li, K. Lu.
链接:
摘要
金属中的高原子扩散率可通过调整扩散过程实现其结构和性能的可调性,但这会导致其定制性能在高温下不稳定。通过制造单晶或大量合金化消除扩散界面有助于解决这一问题,但不会抑制高同系温度下的原子扩散。
研究组发现施瓦茨晶体结构在具有极细晶粒的过饱和铝镁合金中可有效抑制原子扩散。通过形成这些稳定的结构,纳米晶粒中扩散控制的金属间化合物析出及其粗化被抑制到平衡熔化温度,在此温度附近,表观跨边界扩散率降低了约七个数量级。
利用施瓦茨晶体结构开发先进的高温应用工程合金意义重大。
Abstract
High atomic diffusivity in metals enables substantial tuneability of their structure and properties by tailoring the diffusional processes, but this causes their customized properties to be unstable at elevated temperatures. Eliminating diffusive interfaces by fabricating single crystals or heavily alloying helps to address this issue but does not inhibit atomic diffusion at high homologous temperatures. We discovered that the Schwarz crystal structure was effective at suppressing atomic diffusion in a supersaturated aluminum–magnesium alloy with extremely fine grains. By forming these stable structures, diffusion-controlled intermetallic precipitation from the nanosized grains and their coarsening were inhibited up to the equilibrium melting temperature, around which the apparent across-boundary diffusivity was reduced by about seven orders of magnitude. Developing advanced engineering alloys using the Schwarz crystal structure may lead to useful properties for high-temperature applications.
Hierarchical-morphology metafabric for scalable passive daytime radiative cooling
被动日间辐射冷却的形态分级超材料织物
作者:Shaoning Zeng, Sijie Pian, Minyu Su, Zhuning Wang, Maoqi Wu, Xinhang Liu, et al.
链接:
摘要
将被动辐射冷却结构融入个人热管理技术可有效保护人类免受日益加剧的全球气候变化影响。
研究组发现,由于整个超材料织物中随机分散的散射体的形态分级设计,大规模编织的超材料织物可在大气窗口中具有的高发射率,在太阳光谱中具有的高反射率。
通过可扩展的工业纺织品制造路线,研究组的超材料织物在保持高辐射冷却能力的同时,展现出了商业服装理想的机械强度、防水性和透气性。实际应用测试表明,这种超材料织物覆盖的人体温度可比商用棉织物覆盖的人体温度低约 。
超材料织物的成本效益和高性能为智能服装、智能纺织品和被动辐射冷却应用提供了巨大优势。
Abstract
Incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend humans against intensifying global climate change. We show that large-scale woven metafabrics can provide high emissivity () in the atmospheric window and high reflectivity () in the solar spectrum because of the hierarchical-morphology design of the randomly dispersed scatterers throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics exhibit desirable mechanical strength, waterproofness, and breathability for commercial clothing while maintaining efficient radiative cooling ability. Practical application tests demonstrated that a human body covered by our metafabric could be cooled ~ C lower than one covered by commercial cotton fabric. The cost-effectiveness and high performance of our metafabrics present substantial advantages for intelligent garments, smart textiles, and passive radiative cooling applications.
Semiconductor quantum dots: Technological progress and future challenges
半导体量子点:技术进步与未来挑战
作者:F. Pelayo García de Arquer, Dmitri V. Talapin, Victor I. Klimov, Yasuhiko Arakawa, Manfred Bayer, Edward H. Sargent.
链接:
摘要
在量子限域的半导体纳米结构中,电子表现出与块状固体不同的行为。这使得设计具有可调化学、物理、电学和光学特性的材料成为可能。
零维半导体量子点(QD)在可见光和红外波长范围内具有较强的光吸收和明亮的窄带发射,并已被设计用于显示器件光学增益和激光。这些特性对成像、太阳能采集、显示和通信都很有意义。
研究组详述了量子点纳米材料的合成和机理进展,重点介绍了胶体量子点,并讨论了它们在显示与照明、激光、传感、电子、太阳能转换、光催化和量子信息等技术方面的前景。
Abstract
In quantum-confined semiconductor nanostructures, electrons exhibit distinctive behavior compared with that in bulk solids. This enables the design of materials with tunable chemical, physical, electrical, and optical properties. Zero-dimensional semiconductor quantum dots (QDs) offer strong light absorption and bright narrowband emission across the visible and infrared wavelengths and have been engineered to exhibit optical gain and lasing. These properties are of interest for imaging, solar energy harvesting, displays, and communications. Here, we offer an overview of advances in the synthesis and understanding of QD nanomaterials, with a focus on colloidal QDs, and discuss their prospects in technologies such as displays and lighting, lasers, sensing, electronics, solar energy conversion, photocatalysis, and quantum information.
化学 Chemistry
Watching a hydroperoxyalkyl radical (•QOOH) dissociate
观察氢过氧烷基自由基(•QOOH)离解
作者:Anne S. Hansen, Trisha Bhagde, Kevin B. Moore III, Daniel R. Moberg, Ahren W. Jasper, Yuri Georgievskii, et al.
链接:
摘要
通过红外指纹图谱,研究人员可直接观察到一种在挥发性有机化合物氧化过程中短暂形成的典型氢过氧烷基自由基(•QOOH)中间体,可能量依赖性单分子衰变为羟基自由基和环醚产物。
在宽能量范围内,•QOOH单分子离解率直接时域测量的结果,与使用最先进的过渡态势垒区电子结构表征的理论预测结果一致。
大量重原子隧穿增强了单分子衰变,包括沿反应途径的O-O延伸和C-C-O角收缩。主方程模型对•QOOH中间体的压力依赖性热单分子离解率进行了全面的先验预测(重原子隧穿再次增加了该离解率),这是大气化学和燃烧化学全球模型所需的。
Abstract
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate—again increased by heavy-atom tunneling—which are required for global models of atmospheric and combustion chemistry.
新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展。以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表)和第二代半导体材料(以砷化镓和磷化铟为代表)之后,在近10年发展起来的新型宽带半导体材料。 以氮化镓(GaN)为代表的第三代半导体材料,内、外量子效率高,具有高发光效率、高热导率、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性,是世界上目前最先进的半导体材料。它的研究开发,不仅会带来IT行业数字化存储技术的革命,也将彻底改变人类传统照明的历史。 氮化镓材料可制成高效蓝、绿光发光二极管LED和激光二极管LD(又称激光器),并可延伸到白光LED,用高效率蓝绿光发光二极管制作的超大屏幕全色显示,可用于室内室外各种场合的动态信息显示,使超大型、全平面、高清晰、无辐射、低功耗、真彩色大屏幕在显示领域占有更大的比重。高效率白光发光二极管作为新型高效节能固体光源,使用寿命超过10万小时,可比白炽灯节电5-10倍,达到了节约资源、减少环境污染的双重目的。蓝光半导体激光器用于制作下一代DVD,可比现在的CD光盘提高存储密度20倍以上。另一方面,氮化镓材料宽带隙的特点也保证了它在高温、大功率以及紫外光探测器等半导体器件方面的应用前景,它具有高可靠性、高效率、快速响应、长寿命、全固体化、体积小等优点,在宇宙飞船、火箭羽烟探测、大气探测、火灾等领域内也将发挥重大作用。
304 浏览 3 回答
292 浏览 4 回答
248 浏览 3 回答
99 浏览 3 回答
177 浏览 2 回答
198 浏览 7 回答
173 浏览 3 回答
283 浏览 3 回答
139 浏览 4 回答
133 浏览 3 回答
229 浏览 3 回答
321 浏览 3 回答
316 浏览 2 回答
156 浏览 2 回答
179 浏览 3 回答