这次案例还是使用鸢尾花数据分类的数据。 数据路径: /datas/ 数据格式:
数据解释:
1、引入头文件
feature_selection 是做特征选择的包 feature_selection 中的方法 SelectKBest ,帮助我们选择K个最优的特征 feature_selection 中的方法 chi2-卡方检验 ,表示使用 chi2 的方法帮助我们在 SelectKBest 中选择最优的K个最优特征。
2、防中文乱码、去警告、读取数据
总样本数目:150;特征属性数目:4
x=data[list(range(4))] 取得样本前四列特殊数据 '花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度' iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica' y=(data[4]).codes#把Y转换成分类型的0,1,2 将目标的三种分类转换成0,1,2
PS: 在之前的例子中: 04 分类算法 - Logistic回归 - 信贷审批案例 ,我们自己写过一个分类的算法对部分特征进行哑编码操作: parseRecord(record) ,其实pandas自己也集成了这个转换算法: (data[4]).codes ,可以把y直接转换成0,1,2。
以上是数据预处理的步骤,和之前的例子类似。
3、数据分割(训练数据和测试数据)
训练数据集样本数目:120, 测试数据集样本数目:30
注意: 这个demo中的案例在这一步还没有做 KFold-K折交叉验证 。当前步骤的主要内容是对数据进行划分。K折就要生成K个互斥的子集。 KFold 的工作就是帮助我们划分子集的,划分完后我们将子集扔进建模即可。 02 分类算法 - Logistic案例 中提及过K折交叉验证的内容。
4、数据标准化和数据归一化的区别
思考: 行数据和列数据,哪个服从正态分布?显然,列数据是特征,和样本一样都服从正态分布。所以数据标准化和归一化的对象是列。
数据标准化: StandardScaler (基于特征矩阵的列,将属性值转换至服从正态分布) 标准化是依照特征矩阵的列处理数据,其通过求z-score: z-score=(x-μ)/σ 的方法,将样本的特征值转换到同一量纲下。z-score是N(0,1)正态分布,即标准正态分布。 常用与基于正态分布的算法,比如回归。 PS:在 04 回归算法 - 最小二乘线性回归案例 中对 ss = StandardScaler() 数据标准化操作进行了深入分析。
数据归一化: MinMaxScaler (区间缩放,基于最大最小值,将数据转换到0,1区间上的) 提升模型收敛速度,提升模型精度。 常见用于神经网络。 Normalizer (基于矩阵的行,将样本向量转换为单位向量) 其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准。 常见用于文本分类和聚类、logistic回归中也会使用,有效防止过拟合。
原始数据各个特征属性的调整最小值: [ ] 原始数据各个特征属性的缩放数据值: [ ]
5、特征选择: 特征选择:从已有的特征中选择出影响目标值最大的特征属性 特征选择是一个transform的过程 常用方法: { 分类:F统计量、卡方系数,互信息mutual_info_classif { 连续:皮尔逊相关系数 F统计量 互信息mutual_info_classif 这里介绍一种特征选择方法: K方检验 SelectKBest
补充知识:K方检验
ch2 = SelectKBest(chi2,k=3) 这步操作本质是一个Transformer的步骤。Transformer的概念参考 05 回归算法 - 多项式扩展、管道Pipeline 。 K方检验的本质是:判断两个特征之间的关联程度。
看下面两个样本:
1、男女性别和是否会化妆的关联性是很强的:
2、男女性别和是否出门带口罩的关联性不强:
但大部分属性对结果的关联性我们很难用常识去判断,所以我们可以首先假设样本的特征和目标无关。
假设性别和是否会化妆无关。 因此我们设男人中化妆的比例为55%,男人中不化妆的比例是45% 根据实际情况进行计算:( 列联表 ) (20-55) 2 /55 + (90-55) 2 /55 + (80-45) 2 /45 + (10-45) 2 /45 结果越大,说明性别和是否会化妆的关联程度越大,当数值较大时我们可以说拒绝原假设,即原假设错误,真实情况下性别和是否会化妆有很大的影响。 (越大越拒绝)
如果结果越小,说明假设正确,我们称之为不拒绝原假设。
注意: K方统计用于离散的特征,对连续的特征无效。
对类别判断影响最大的三个特征属性分布是: [ True False True True] [0 2 3]
这里False的属性就是K方检验分数最小的那个,如果只取3个特征,False对应的那个特征就会被丢弃。
6、模型的构建、训练、预测:
准确率: Score: Classes: [0 1 2]
7、画图: