语音合成技术给我们带来了很多惊喜,你知道自己每天都在与它们打交道吗?而开车时的导航就是语音合成的一种。虽然目前的"它们"只会相对机械的朗读文章,但可以肯定的是,语音合成技术已经走出实验室,开始商用,其潜在的巨大市场已露出曙光。
我们的身边总是人声鼎沸。
婴儿牙牙学语,男女互诉爱意。在肺部、气管和声带的共同作用下,声音出现,喉内肌肉协调作用下,我们说出能够代表自己想法的字符,再赋予其愤怒或喜悦或悲伤的 情感 ,人类的语音就此形成。
18世纪末,一个因土耳其行棋傀儡的将在多年后臭名昭著的发明家沃尔夫冈·冯·肯佩伦,花费了人生最后20年的时间,试图模拟人类的语音。他做了一个布满孔洞的空箱,空箱连接着一个奇异形状的鼓风机,鼓风机被压动后将使得内置的簧片振动,这一过程模拟了人类的发声,也确实发出了声音,而这也成就了人类最早的语音合成机械之一。
让机器更像人类,是无数科学家的梦想。这样的梦想被多方位的推进,从机器的外形上、内核的思考运算上,以及对外表达的说话上。
如今,电子设备取代了空盒子,算法则比簧片更能够协调发声。在技术发展下,声音的波动被计算机捕捉、计算、指引,最终发出声音。这一项带着前人梦想的技术,不再单单出现在电影和小说里,也承载起了巨大的市场走进千家万户,这就是语音合成。
从Siri开始的热潮,语音合成潜力无限
同时,Siri的热潮也拉开了语音合成技术运用的大门。
2014年微软推出了"小娜"与"小冰",这是将Siri所拥有的语音识别技术及语音合成技术分开来,小娜负责理解复杂的口语指令并进行执行,而小冰主要能够和人类友好地聊天。
随后,这样的运用逐步增多:2014 年底,亚马逊发布了 Echo 智能音箱,语音助理 Alexa也随之亮相;一年半后,Google 也发布了第一代智能音箱 Google Home 和语音助手 Google Assistant。
国内的巨头也不遑多让,京东叮咚智能音箱、天猫精灵智能音箱、小爱系列智能音箱、小度智能音箱,也纷纷进入了国人的家居生活。
Siri的热潮同步开启的,不仅仅是语音合成技术在硬件上的应用,也包括一系列更具想象力的交互场景,带来了巨大的商机。
2015年春节,本就搭载了语音导航的高德地图与郭德纲合作,推出了高德地图欢笑版。用户打开高德地图,不仅能够听到导航播报,还能听到郭德纲的极具特色的段子。这一次尝试,让高德地图一度跃至苹果App Store榜单第2名。
在今年新冠肺炎疫情期间,"宅经济"大行其道,"听书"市场也快速爆发,有声阅读成为新的阅读潮流。
除此以外,短视频中的AI配音,让视频内容者省去大量配音时间;对已故知名艺人的声音采集,实现过去与现在的交互,圆了一代粉丝的梦想……
我们可以看到,语音合成技术的未来拥有巨大的想象空间,根据赛迪智库数据,预计到2021年智能语音市场规模将达195亿元。在这其中,智能语音就由语音识别技术(ASR)和语音合成技术(TTS)共同组成。
而这两项技术也正在被头部企业迅速推进,市场之下,语音合成已经不仅仅代表人类过去的梦想,更是代表着更"大一统"的 科技 格局,毕竟,这一技术改变着人类与机器的交互方式,也将改变未来人类的机器使用习惯,代表着全新的机会与入口。
从过去到现在,语音合成技术一览
1773年,俄国科学家、在哥本哈根生活的生理学教授克里斯蒂安·克拉特齐斯坦(Christian Kratzenstein)制造了一个特别的设备,通过共鸣管和风琴管的连接,几乎可以完美的发出 a、e、i、o、u 这五个元音。
十多年后,前文提到的沃尔夫冈·冯·肯佩伦也制造了一台类似的机械声学语音机器。随后,多位发明家基于这一机器进行改进,都是试图通过物理机模拟人说话发音。
这样的尝试已经令人难以想象,不过,即使这样的物理机发展得登峰造极,也无法模拟出我们说出的每一个音节、无法拥有人说话的音质,也无法停顿、无法带有情绪。
因此,另一种方式出现——拼接系统,让说话人录制语音存入系统,在合成语音时选择对应的片段进行拼接、合成。这样的拼接系统能够相比物理机极大地接近人声,虽然拼接处的瑕疵难以消除,但是随着如今大数据时代的来临,大语料库的出现,让拼接出的语音逐步真人化,直至如今依然有商业系统在使用。
基于参数的合成技术的诞生背景则是基于神经网络架构的深度学习方法的飞速进展。当时,对语音的识别不再是识别一个简单的词和短词组,而是基于统计的方法,运用声学模型帮助计算机认知每个音素单元的声学特征、运用语言模型帮助计算机实现对人类用词习惯的认知,最终给到用户最高可能性的连接。在这其中,典型的模型是隐含马尔可夫模型(HMM),用来描述如何在可变长的时序特征序列上打词标签。
2017年3月,行业的引领者Google 提出了一种新的端到端的语音合成系统:Tacotron。端到端语音合成是在参数合成技术上演进而来的,把两段式预测统一成了一个模型预测,即拼音流到语音特征流的直接转换,省去了主观的中间特征标注,克服了误差积累,也大幅度提高了语音合成的质量。
然而,为了实现真正像人一样的发音,语音合成系统必须学会语调、重音、节奏等表达因素,这一问题,Tacotron也并未解决。
谷歌曾共享了两篇新论文试图解决这一问题,第一篇论文《Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron》介绍了"韵律学嵌入"(prosody embedding)的概念。论文中为 Tacotron 增加了一个韵律学编码器,该嵌入捕捉包括停顿、语调、语速等在内的音频特征可根据一个完全不同的说话者的声音生产语音。
第二篇论文《Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis》则在上一篇论文的架构上进一步展开,并且创新性地提出了一种建模潜在语音"因素"的无监督新方法。这一模型之下,学习的不再是时间对齐的精确的韵律学元素,而是较高层的说话风格模式,并且可以迁移于任意不同的短语之中。
如果论文提到的模型实现,那么我们便可以迫使 Tacotron 使用特定的说话风格,不需要参考语音片段,并能创造出语音长度多样化的不同语句,并带有情绪。
在不远的将来,或许我们就将听到,来自机器的人类声音。
国内:积极商用,进展瞩目
在语音合成的重要研究中,因为国内起步较晚,所以我们很少看到突破性的技术发展。但是,即便停留在艰难的 探索 初期,巨头们之于语音合成仍旧趋之若鹜。
我们也惊喜地看到,不少企业在近期通过语音合成的商用落地,展现出了自己的技术实力。
① 京东数科:AI主播"小妮"上岗
京东数科基于京东多年在人工智能、大数据、云计算等领域的技术沉淀,在2018年就开始组建机器人的团队,研究覆盖生命科学、传感器材料乃至运动力学与人机交互。
在全面的机器人开发体系下,今年5月,京东数科推出了令人瞩目的AI主播"小妮",这是京东数科自主研发的AI虚拟数字人产品首次亮相。
小妮的真实是全方位的,在听感、表情、头部动作乃至口型上,小妮都极像真人。从文字到语音,小妮通过自研的轻量级对抗语音合成技术进行转化;而小妮特色鲜明的声音及极具真实性的呼吸和停顿,则是来源于在多人数据上结合深度神经网络进行个性化建模……
更为重要的是,小妮的出现打通了语音、图像、视频,在语音生成视频的阶段,她的形象同样真实。因为京东数科AI实验室利用对抗生成网络来还原更真实的表情,通过3D模型运动追踪技术来确保AI主播在说话时口型准确、表情细腻、头部运动自然。
而除了主播领域以外,AI虚拟数字人还可以用智能客服及招聘领域。在未来,我们可以预见到,AI虚拟数字人在其他高重复性场景的更多运用可能性。而伴随着京东数科全面的机器人体系研发技术的进展,或许也将出现超乎我们想象的AI运用。
② 科大讯飞:为多家企业提供底层技术支持
早在之前,科大讯飞就推出了讯飞录音笔、智能鼠标、阿尔法蛋等涉及语音交互的产品。今年,来自科大讯飞地一款彩色墨水屏阅读器正式面世,一方面,阅读器可以进行常见的新闻播报、语音读书,满足用户的基础要求;另一方面,阅读器结内置了神秘AI主播,可以对话用户、助力用户解决问题。同时,科大讯飞也为多家企业提供底层技术支撑,覆盖智能手机、智能 汽车 等多个领域。
③ 腾讯云:语音累计音色种类达24种
而对于拥有国内最大流量池——微信、QQ的腾讯而言,这家企业则选择为内容创业者提供服务。
今年9月,腾讯云语音合成团队正式开放面向全量用户的合成音频平台,该平台能够帮助用户在零门槛的情况下实现语音合成技术的运用,用户只需要直语音合成控制台上生成和下载文本对应的音频文件即可。该功能的侧重点是帮助内容创作者在公众号、短视频、小视频等内容上更简单、快捷地插入对应所需的音频文件。同时,腾讯云还发布了全新地11种音色,其中甚至包括粤语这样的方言在内,目前累计音色种类达24种。
④ 百度:百度大脑开放全栈语音引擎能力
作为将AI作为战略进行投入的百度,在语音合成上的推进也不容小觑。
去年,已经开放三年的百度发布了语音引擎。这是一套非常全面的系统,覆盖内容非常广泛,包括硬件模组、开发板以及语音交互场景解决方案等。在这其中,百度也专门围绕语音合成的成功进行了发布,推出了6个在线语音合成精品音库和5个离线语音合成精品音库。
未来语音合成将更接近人类的语言
立足现在,我们不禁畅想,未来的语音合成将是什么样,又将出现在哪些地方?
在技术上,毫无疑问,未来的语音合成将更接近人类的语言。一个理想的语音合成系统由三部分组成:文本分析、韵律生成和合成语音,而在这三方面,行业的发展都还有待提高。
在这其中,韵律生成是行业面临的共同问题,如何可以让语音合成更像人类?更具表达力?作为声学模型,还有大量个性化、 情感 化的变化因素需要学习。而值得一提的是,语音合成技术的复杂度也需要降低,从而实现更广度地运用。我们也相信,随着大量语料的有效使用,这一切问题也都将解决,未来,语音合成必将更加"传神"。
而随之而来的,我们的生活也将被改变。
一方面,在 科技 带来革新的同时,传统也将受到冲击。在上文中,小妮被运用与客服以及招聘的部分环节,那么很明显,在不远的未来,具有重复性的语音性质的工作将受到巨大影响。
而另一方面,更为智能的未来也将到来,在将来,人与机器的交互方式或许将被彻底改变,到那时,全新的商业机会也将藏于其中。
为了迎接这一时代,巨头趋之若鹜,而普通人也同样该砥砺前行。
#智能语音##语音合成#
这篇博客的主要内容是对语音合成 (text to speech)的背景知识进行介绍。 希望可以让读者通俗易懂的了解语音合成的工作原理, 并对为了理解state-of-the-art text to speech 的算法做基础。这个简介主要基于这篇论文 “Wavenet: a generative model for raw audio”的附录介绍的。 论文链接如下: , 以及stanford CS224S的课程, 链接如下 语音合成是通过文字人工生成人类声音, 也可以说语音生成是给定一段文字去生成对应的人类读音。 这里声音是一个连续的模拟的信号。而合成过程是通过计算机, 数字信号去模拟。 这里就需要数字信号处理模拟信号信息,详细内容可参考 [1]。 图片1, 就是一个例子用来表示人类声音的信号图。 这里横轴是时间, 纵轴是声音幅度大小。声音有三个重要的指标, 振幅(amplitude) , 周期(period) 和 频率(frequency) 。 振幅指的是波的高低幅度,表示声音的强弱,周期和频率互为倒数的关系, 用来表示两个波之间的时间长度,或者每秒震动的次数。 而声音合成是根据声波的特点, 用数字的方式去生成类似人声的频率和振幅, 即音频的数字化。了解了音频的数字化,也就知道了我们要生成的目标函数。 音频的数字化主要有三个步骤。 取样(sampling) :在音频数字化的过程,采样是指一个固定的频率对音频信号进行采样, 采样的频率越高, 对应的音频数据的保真度就越好。 当然, 数据量越大,需要的内存也就越大。 如果想完全无损采样, 需要使用Nyquist sampling frequency, 就是原音频的频率2倍。 量化 (quantization) : 采样的信号都要进行量化, 把信号的幅度变成有限的离散数值。比如从0 到 1, 只有 四个量化值可以用0, , , 的话, 量化就是选择最近的量化值来表示。 编码 (coding ):编码就是把每个数值用二进制的方式表示, 比如上面的例子, 就可以用2bit 二进制表示, 00, 01, 10, 11。 这样的数值用来保存在计算机上。 采样频率和采样量化级数是数字化声音的两个主要指标,直接影响声音的效果。 对于语音合成也是同样, 生成更高的采样频率和更多多的量化级数(比如16 bit), 会产生更真实的声音。 通常有三个采样频率标准 1. 采样, 用于高品质CD 音乐 2. 采样, 用于语音通话, 中品质音乐 3 . 采样, 用于低品质声音。 而量化标准一般有8位字长(256阶)低品质量化 和16位字长(65536阶)高品质量化。 还有一个重要参数就是通道(channel), 一次只采样一个声音波形为单通道, 一次采样多个声音波形就是多通道。 所以在语音合成的时候,产生的数据量是 数据量=采样频率* 量化位数*声道数 , 单位是bit/s。 一般声道数都假设为1.。 采样率和量化位数都是语音合成里的重要指标,也就是设计好的神经网络1秒钟必须生成的数据量 。 文本分析就是把文字转成类似音标的东西。 比如下图就是一个文本分析,用来分析 “PG&E will file schedules on April 20. ” 文本分析主要有四个步骤, 文字的规范化, 语音分析, 还有韵律分析。 下面一一道来。 文本分析首先是要确认单词和句子的结束。 空格会被用来当做隔词符. 句子的结束一般用标点符号来确定, 比如问号和感叹号 (?!), 但是句号有的时候要特别处理。 因为有些单词的缩写也包含句号, 比如 str. "My place on Main Str. is around the corner". 这些特别情况一般都会采取规则(rule)的方式过滤掉。 接下来 是把非文字信息变成对应的文字, 比如句子中里有日期, 电话号码, 或者其他阿拉伯数字和符号。 这里就举个例子, 比如, I was born April 14. 就要变成, I was born April fourteen. 这个过程其实非常繁琐,现实文字中充满了 缩写,比如CS, 拼写错误, 网络用语, tmr --> tomorrow. 解决方式还是主要依靠rule based method, 建立各种各样的判断关系来转变。 语音分析就是把每个单词中的发音单词标出来, 比如Fig. 3 中的P, 就对应p和iy, 作为发音。 这个时候也很容易发现,发音的音标和对应的字母 不是一一对应的关系,反而需要音标去对齐 (allignment)。 这个对齐问题很经典, 可以用很多机器学习的方法去解决, 比如Expectation–maximization algorithm. 韵律分析就是英语里的语音语调, 汉语中的抑扬顿挫。 我们还是以英语为例, 韵律分析主要包含了: 重音 (Accent),边界 (boundaries), 音长 (duration),主频率 (F0). 重音(Accent) 就是指哪个音节发生重一点。 对于一个句子或者一个单词都有重音。 单词的重音一般都会标出来,英语语法里面有学过, 比如banana 这个单词, 第二个音节就是重音。 而对于句子而言,一样有的单词会重音,有的单词会发轻音。 一般有新内容的名词, 动词, 或者形容词会做重音处理。 比如下面的英语句子, surprise 就会被重音了, 而句子的重音点也会落到单词的重音上, 第二个音节rised, 就被重音啦。 英语的重音规则是一套英语语法,读者可以自行百度搜索。 I’m a little sur prised to hear it cha racterized as up beat . 边界 (Boundaries) 就是用来判断声调的边界的。 一般都是一个短语结束后,有个语调的边界。 比如下面的句子, For language, 就有一个边界, 而I 后面也是一个边界. For language, I , the author of the blog, like Chinese. 音长(Duration) 就是每个音节的发声长度。 这个通俗易懂。 NLP 里可以假定每个音节单词长度相同都是 100ms, 或者根据英语语法, 动词, 形容词之类的去确定。 也可以通过大量的数据集去寻找规律。 主频率 (F0 )就是声音的主频率。 应该说做傅里叶转换后, 值 (magnitude) 最大的那个。 也是人耳听到声音认定的频率。一个成年人的声音主频率在 100-300Hz 之间。 这个值可以用 线性回归来预测, 机器学习的方法预测也可以。一般会认为,人的声音频率是连续变化的,而且一个短语说完频率是下降趋势。 文本分析就介绍完了,这个方向比较偏语言学, 传统上是语言学家的研究方向,但是随着人工智能的兴起,这些feature 已经不用人为设计了,可以用端到端学习的方法来解决。 比如谷歌的文章 TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS 就解救了我们。 这个部分就比较像我们算法工程师的工作内容了。 在未来的博客里, 会详细介绍如何用Wavenet 和WaveRNN 来实现这一步骤的。 今天这个博客就是简介一下算法。 这里说所谓的waveform synthesis 就是用这些 语言特征值(text features)去生成对应的声波,也就是生成前文所说的采样频率 和 振幅大小(对应的数字信号)。 这里面主要有两个算法。 串接合成(concatenative speech synthesis) : 这个方法呢, 就是把记录下来的音节拼在一起来组成一句话,在通过调整语音语调让它听起来自然些。 比较有名的有双音节拼接(Diphone Synthesis) 和单音节拼接(Unit Selection Synthesis)。这个方法比较繁琐, 需要对音节进行对齐(alignment), 调整音节的长短之类的。 参数合成 (Parametric Synthesis) : 这个方法呢, 需要的内存比较小,是通过统计的方法来生成对应的声音。 模型一般有隐马尔科夫模型 (HMM),还有最近提出的神经网络算法Wavenet, WaveRNN. 对于隐马尔科夫模型的算法, 一般都会生成梅尔频率倒谱系数 (MFCC),这个是声音的特征值。 感兴趣的可以参考这篇博客 去了解 MFCC。 对于神经网络的算法来说, 一般都是生成256 个 quantized values 基于softmax 的分类器, 对应 声音的 256 个量化值。 WaveRNN 和wavenet 就是用这种方法生成的。 下面是我学习语音合成的一些资料, 其中stanford cs224s 是强力推荐的,但是这个讲义讲的逻辑不是很清楚, 要反复看才会懂。 UCSB Digital Speech Processing Course 课程, 声音信号处理的基础。 建议读一遍, 链接如下, Stanford CS224S WaveRNN, 音频的数字化,
普通话对英语语音的迁移作用摘 要: 本文在论述语言迁移理论本质的基础上,分析了影响迁移的因素,对汉英两种语言对比,从音素、音位、声调/语调语言、重音和节奏等层面分析了普通话对英语学习的负迁移作用,以便更好地帮助学生克服普通话的负迁移影响,促进英语语音的学习。关键词: 普通话;英语语音;语言迁移;对比研究The Transferring Effect of Mandarin on English PhoneticsLin YuhangDepartment of Foreign Languages and Literatures, Zhangzhou Teachers College 01021225Abstract: This paper is meant to help the Chinese English-learners to overcome the negative phonetic transfer and promote the study of English phonetics by dealing with language transfer theories, analyzing the factors affecting language transfer, comparing and analyzing some phonetic features of the Chinese and English languages, such as phone, phoneme, tone/intonation language, stress and words: Mandarin; English phonetics; language transfer; comparative analysis语音过关是英语学习的关键,同时也是难点。然而,外语界对语音教学问题的探讨却明显少于其他领域,这难免有些“避重就轻”之嫌。将英汉两种语音进行对比研究,对比教学,不失为一种良策,如张凤桐教授编著的《英国英语语音学和音系学》就是按照这一指导思想编写的教材。对比研究的理论基础是语言迁移,同时,对比研究和教学是正视语言迁移作用的科学方法和手段。然而就在将两种语音进行对比教学的过程中,产生了一些似是而非的说法,例如“普通话好,英语语音就好”是其中最具代表性的。这一说法过分夸大了语际间的正迁移作用,而忽略了负迁移作用。应该说这一问题的答案是不确定的。世界上有各种各样的语言,虽然各种语言有其相通的一面,但每一种语言都有其特有的语音体系,并有自己独特的发音规律。要全面正确地了解普通话对英语语音的迁移作用,就应该在认识语言迁移的本质和产生语言迁移因素的基础之上,将英汉语音、音位相关的方面作科学的对比研究。一、 语言迁移概念及其实质奥苏伯尔的认知结构迁移理论代表从认知的观点来解释迁移的一种主流倾向,然后有符号性图式理论、产生式理论、结构匹配理论与情境性理论等迁移理论。根据奥苏伯尔的认知结构迁移理论,“迁移是一种认知活动,体现了个体主动的心理加工过程”[1]。但也存在分歧,一些研究者着眼于各理论在更高层次上的概括,将迁移概括为“一种学习中习得的经验对其他学习的影响,是新旧经验的整合过程”[2],这种整合过程可以通过同化、顺应与重组三种方式实现,其实质是原有认知结构与新学习的相互影响、相互作用,从而形成新的认知结构的过程。迁移(transfer)作为一个心理术语,是指已获得的指示、技能、方法等对学习新知识、技能的影响。迁移是人类认知的一个普遍特征。在外语学习中,迁移“指的是人们已经掌握的知识在新的学习环境中发挥作用的心理过程”[3],主要是母语及母语学习经历对学习新语言的影响。语言迁移可分为正迁移(positive transfer)和负迁移(negative transfer)。如果某个外语结构在母语中有对应结构,或母语对外语的学习起促进作用,在学习中就会出现正迁移现象。但是如果某个结构在母语中没有对应的结构,或者两种语言中的对应结构有差异,也就是说,母语对外语的学习起干扰或抑制作用,就会产生反面的迁移,从而影响外语的学习,这就是学习中的负迁移现象。系统的语言迁移研究可追溯到上个世纪四五十年代的语言学家弗赖伊斯()和雷多()。他们从斯金娜()的行为主义心理学理论出发,认为“学习是刺激与反应的强化,是习惯的形成,是新旧知识的联结。因而在外语学习中,母语这种先前语言学习的习惯会对新的外语学习产生迁移作用”[4]。基于这一观点,他们认为“外语学习的主要困难是由两种语言的差异引起的,学习的主要任务就是找出并克服这种差异”[4],据此他们提出了对比分析假说(contrastive analysis hypothesis),即“将学习者的母语(mother tongue/native language)与目标语(target language)进行各方面的比较分析,找出两者的差异,解释或预测外语学习中已经或将要出现的困难与错误,并以此为指导教材的编写和教学活动。”[4]20世纪60年代末,乔姆斯基提出了语言习得机制( language acquisition device)假说和普遍语法 (universal grammar)理论。他认为:“人类语言结构存在着普遍性(language/linguistic universals),这种语言的普遍性反映了人类的经验过程,反映了人类获得新知识能力的普遍性”[5]。也就是说,人类生来就有自然学习语言的能力,它植根于人的内在机制,即语言习得机制。格林伯格( )通过对跨语言调查(cross-linguistic surveys)特别是对语序的分析来研究和证明语言的普遍性。总之,无论是强调母语迁移作用的对比分析假说,还是强调人类语言的普遍性而忽视母语迁移现象的普遍语法理论,都从不同的方面说明了正是各种语言具有一定的共性,母语才会对外语学习产生积极影响的正迁移作用,同时每种语言所具有的特殊性又使母语迁移对外语学习产生一定的负面影响,即负迁移。二、语言迁移产生的因素语言迁移绝非简单的母语与外语或第二语言间的迁移,也不是两种语言间的相似性或共同性就能决定迁移的程度。相反,它涉及各种不同类型的迁移,也涉及不同的主客观因素。任何迁移形式的产生都受到许多主客观因素的制约。影响英语语音学习迁移的因素很多,包括学习材料间的共同因素、对材料的理解程度、知识经验的概括水平、定势作用、认知结构的清晰性和稳定性及知识的运用等。奥苏伯尔认为,认知结构的3个变量影响新的学习或迁移的发生。认知结构即学生头脑中的知识结构,从广义上讲,它是学生已有观念的全部内容及其组织;从狭义上讲,它是学生在某一特殊领域中的观念的全部内容及其组织。认知结构变量就是学习者应用他的原有知识同化新知识时,原有认知结构在内容和组织方面的特征。影响陈述性知识迁移的变量是:可利用性、可辨别性和稳定性。此外,有学者认为以下问题与语言迁移密切相关。首先,情境特征引起的关注。情境包括最初的学习情境和后来的迁移情境,两种情境是否相似影响迁移水平。研究发现,物理的和社会的场景也是整个学习中重要的、有意义的组成部分。不同的场景或情境,其学习与迁移可能不同。因此,真实的英语学习情境,如外语角等,有助于将学得的语言知识与语言技能迁移到实际情境中去。其次,强调迁移的主动性与通达性。通达体现了学习者的主观能动性,意味着学习者可在迁移机会出现时,顺利地提取有关的经验或可利用的资源。有效的学习者有强烈的内部动机来调节自己的语言学习活动,如主动识别先前的语言学习与目前任务的相关性,识别恰当的语言使用和语言迁移情境,主动提取可利用的资源等,这些都是语言迁移产生的必要条件。三、 对比研究中普通话对英语语音的迁移作用对比研究是建立在美国学者雷多(R. Lado) 1957年提出的“对比分析(contrastive analysis)”基础上的一种语言分析方法。雷多的对比研究是一种在语音、语法和文化层次上对第一语言和第二语言进行严格的、逐一比较的体系。该对比研究的理论基础和焦点是语言迁移。语言的对比研究有助于人们认识语言间的区别和联系。李庭芗先生指出,“英、汉语在语音方面有哪些相同和相异的地方,是每个英语教师所必须了解的。英、汉对比的知识能帮助教师根据英、汉语的异同,预见学生在学习中的难点和重点,从而在教学方法上采取相应措施,以提高英语教学的质量”[6]。要学好英语语音,首先要了解哪些音是汉语中没有的,哪些音容易受汉语语音的干扰,英、汉语音之间怎样互相干扰的。普通话学习者在英语语音学习中产生的迁移,虽然不完全是具体知识的迁移,却是普通话发音习惯、发音部位的迁移,也是一种发音技能的迁移。对两者进行音素(phone)、音位(phoneme)及音节(syllable)等方面作系统的对比研究,无疑会促进找准正迁移作用的条件,而减少负迁移产生的干扰,有助于英语语音的学习。语音的最小单位是音素,但是在言语交际中能区别意义的最小语音单位是音位。音位分为音段音位(segmental phonemes)和超音段音位(super-segmental phonemes)两种,前者包括元音、辅音,元音与辅音、辅音与音在词中的组合,即音位组合或音节;后者则指重音(stress),音程(length),节奏(rhythm),音调(tone),语调(intonation)及音渡(juncture)等。以下是两种语言音位的对比分析和迁移作用的情况:1. 元音、辅音和声母和韵母属于印欧语系日耳曼语族的英语有20个元音、28个辅音。英语的音位是区别词义的最小单位。属于汉藏语系汉语的音位和英语一样,也是区别词义的最小单位。普通话是汉语的代表语言,有辅音音位,即声母22个,韵母31个。声母一般位于音节的开头,韵母是声母后的一部分,一般由元音或元音加辅音/n、n^/构成,如/B、o、Bi、en、uBn^/等韵母。英语元音分为单元音和双元音;普通话的元音分为单韵母和复韵母。英语的单元音数量比普通话的单韵母要多,而且分得细。普通话里只有6个单韵母;英语有12个单元音,而且分为前、中、后元音。其中/I、U、e、A、Q/等单元音在普通话中找不到近似的音,很难说普通话说得好的人一定就能发好这些音和包含这些音位的单词和句子。而在普通话中 能找到的近似音如/i、u/,前者发音的舌位比英语更靠前,后者则更靠后[7]。另外,普通话的复韵母/ei、Bi、Bo、ou/和英语的双元音/eI、aI、au、EU/虽都以强元音为主,向弱元音方向滑动。但是,普通话滑动较快,而且并没有达到弱元音的位置,念起来两音浑然一体;英语的双元音滑动较明显,两者相对独立,普通话较好的人很容易将like误念成/lak/或/lek/。值得注意的是两者在发音的部位和口形上都存在差异。发复韵母/ei、Bi、Bo、ou/的口形张得小于发双元音/eI、aI、aU、[U/,但舌位略靠后[7]。当然,能掌握汉语中的渐强复韵母,如/iB、ie、uB、uo/的学习者更容易发好英语中的双元音/I[、Z[、U[/。普通话和英语里都有三元音,其发音方法各不相同:发普通话三元音的方法是由弱到强,再由强到弱,中间的元音紧张度强,形成一个音节,如/iBo、uBi、ioU、iBo/等;英语的三元音由双元音加/[/组成,但不是出现在同一个音节里,其发音方法是由强到弱,再由弱到次强。普通话和英语的辅音音位也存在异同。英语的辅音多数是清浊成对的,如 /p、b/,/t、d/,/k、g/等;而普通话的辅音多数分为送气和不送气的清辅音,如/p、b、t、d、k、g、j、q、x、zh、ch、sh、z、c、s/等,浊辅音只有/r、m、n、l、ng/5个。汉语的送气和不送气区别意义;英语的清浊可以区别词义,影响元音的长度和同化相邻的辅音,如/lIt/中的/I/就发得比/lId/中的/I/短促,浊音能延长前面带的元音。又如元音/R:/在 caw,cord,caught三个单词中的音程不同,在caw中发音最长,在cord中次之,caught中则最短。此外,英语中的辅音根据所处的位置不同和所连接的音位的关系,产生音位变体(allophone)。如音位/t/在不同的发音环境中,它的发音是不一样的,在top中是送气的(aspirated);在stop中是不送气的(unaspirated);在certain中是鼻腔爆破(nasalized plosive);在little中是舌边爆破(lateral plosive);在that kid中是不完全爆破(incomplete plosive);在that day中是失去爆破(loss of plosive)。这些现象是英语中特有的,普通话再好,如果没有具备该语音知识,也学不好英语语音。诚然,普通话语音系统中的一些音位与英语的某些音位无大差别。比如,鼻辅音(nasal)在两种语音系统中构成一个自然类,可以用同样的区别特征加以描述,/m/,/n/,/N/可分别描述为〔+辅音性,+鼻音性,-后部性,+双唇性〕;〔+辅音性,+鼻音性,-后部性,+齿龈性〕;〔+辅音性,+鼻音性,+后部性,+软颚性〕。能发好普通话鼻辅音的学习者,语言的正迁移作用就能让他正确发好英语的鼻辅音。但学习者更应关注的那些和普通话发音的部位和方法有差异的近似音和汉语中根本没有的音位,如/W、T/,/F、V/,/tF、dV/等,不管普通话说得多地道的学习者,不加强练习,也不容易发好齿摩擦音(dental fricative)/W、T/,颚龈摩擦音(palato-alveolar fricative)/F、V/和颚龈塞擦音(palato-alveolar affricate)/tF、dV/。特别值得注意的是以下辅音在普通话和英语中的不同描述:/s、z/在英语中为齿龈摩擦音(alveolar fricative);在汉语中前者为齿摩擦音(dental fricative),后者为齿塞擦音(dental affricate)。/h/在英语中为喉擦音(glottal fricative);在汉语中为软颚摩擦音(velar fricative)。/r/在英语中为无摩擦延续音(approximate);在汉语中为卷舌摩擦音(retroflex fricative)[7]。2.音位组合—音节对比音节既是语音学中的一个概念,也是音位学中的重要概念。对音节的定义说法不一。就其结构而言,“音节是由一个或一系列音位构成的语音结构”[7](P20)。音节通常由起音(onset),领音(peak)和收音(coda)构成,领音一般是元音(vowel),起音和收音常常是辅音(consonant)。英语音节构成形态要比普通话音节构成复杂得多。具体形态如下:英语音节:V-VV-VVV-CV-CVV-CVVV-VC- VCC-CCVV-CVC-CVVC-CCV-VCCC-CCVC-CC CVC-CCCVVCC-CCCV-CCVVC-CCVVCC-CCVCC C-CCVCCCC-CVCC-CVCCC-CVCCCC汉语音节:V-VV-VVV-CV-CVV-CVVV-VC-CVC- CVVC从以上对比中可看出,普通话的音节结构比较简单,通常是单辅音加元音;英语音节的首、尾常常出现辅音群(consonant clusters)如 must tempt texts thousandths等。换言之,普通话中只有单辅音型的音节,没有辅音群型的音节。辅音群型的音节成为中国学习者,包括能说标准普通话学习者的语音难点。学习者习惯于在读英语辅音群中夹带元音,如把green念成/^[ri:n/。另外升调时容易从词尾的辅音开始,试图把它拉的很长,因而很费力,发出的音也很不规范。这是因为汉语的音节除/n/和/ng/两个鼻辅音外,都以元音结尾,即为开音节,而且节峰前最多只有一个辅音;而英语的音节节峰前最多可有三个辅音,如/sprIt/等,而节峰后最多可有四个。由于两种语言的音节系统不同,学生易将汉语的音节特征转移到英语学习中。3.语调语言(intonation language)和声调语言(tone language)汉语中的每一个字(或音节)都有一个区分字义作用的声调, 如/mā/妈,/má/麻,/mǎ/马,/mà/骂,/mB/吗,语音学家称汉语为声调语言;然而在英语中,单词的音调不改变它的词义,如book/buk/在读成平调、升调或降调时始终是“书”的意思,但英语的单词被用于句子时,就要赋予它一定的语调,来表达说话者的态度、语气等,这种语调的核心一般放在语句的末尾,所以语音学家把英语叫做语调语言。如:This is your↘seat.句未的降调表示肯定的语气,但 This is your ↗seat?表示疑问的口吻,以求取得对方的证实。汉语句子的语调也常常落在句未的重读字上,但由于这个重读字本身又有固定的声调,其实际语调必然受到该字本身的声调和所需语调的共同影响,即在原来字调的基础上,按所需语调去稍加调制、改变,使它既不完全失去原来的声调,又符合所需语调的要求。如:“这是我的球↘。”句中的“球”字本身是升调(阳平),而句末要求用降调,实际话语中只能采取折衷的办法,把“球”字的升调上升幅度减少一些。又如:“你的书↗,还是他的?”句中“书”字原本是高平调(阴平),而句子中间需要升调,语言实践中只能是把“书”字在原来的高平调后面接着稍微升高一些,成为高平调加升调。可见,由于汉语语调受字调的限制,升降规则比英语复杂,升降的幅度也要小。中国学生由于受汉语的这种声调、语调的负迁移影响,讲英语时往往语调平平,抑扬不太分明,升降起伏较小,很难学会英语那种梯级下降型的语调。近年来,语音学家趋向于更加强调英语语调的重要性,认为元音辅音是英语本身,而语调是英语的灵魂。假如元音辅音念得很准,而语调不对,听起来就不像英语。相反,假如元音辅音读得有些毛病,但语调正确,听起来还像英语。既然英语语调这样重要,那么我们要学好英语就必须注意汉语和英语在语调上的区别,努力在说英语时克服汉语语调的影响,勤学苦练,逐步掌握英语语调。4.其他语音方面的负迁移英语单词没有辨义的声调,重音是重要的语音要素,有区别词义的作用,如:´converse(名词,相反的事务),con´verse(动词,交谈)。在汉语词组中起辨义作用的是声调而不是重音,声调比重音在话语中具有更加重要的作用,除词尾含有虚词的词组(如桌子、木头等)和个别词组(如爸爸、妈妈等)外,大部分词组中的每个字都读成同样的轻重程度,如教师、电话、汽车、天气等。这种母语特点迁移到英语学习中,常常使初学者读多音节英语单词是重读、轻读音节不明甚至重音错位,如把´diligent读成´di´li´gent,di´ligent或dili´gent。在节奏和韵律方面,汉英之间的差别也很大。汉语是以音节(字)为计时单位的,而英语则以重音为计时单位的。汉语中,音节(字)的数目是韵律的基础,除了一些助词念得较快较含糊外,一般每个字所占用的时间大致相等,读得也清清楚楚。例如古诗中总是根据每行的字数来决定它的韵律或节奏,如柳宗元的《江雪》:千山鸟飞绝,万径人踪灭。孤舟蓑笠翁,独钓寒江雪。即使音节(字)有思想表达上所需的轻重之分,也不像英语那么明显、分明,所以,一般字较多的一句话所占用的时间,要比字较少的一句话占用的时间长,如“他有汽车。”和“他有一辆上海产的汽车。”但在英语中,重音和轻音是交替出现的,而重读音节才是节奏的基础、主体。重读音节总是声调较高,响度较大,发音清楚,所占时间较长;而轻读音节则声调较低,响度小,读得快而含糊,所占时间较短。所以,重音与重音之间总是保持大致相等的实际距离。重音之间的轻读音节越多,就读得越快越含糊。如:“Ann ´found the ´book she ´lost at ´last.”和“E´lizabeth ´found the ´article she was ´studying at the ´library.”前一个句子有8个音节,后一句却有19个音节,但两个句子同样只有5个重读音节。为了保持每两个重读音节之间所用时间大致相等,重读音节之间的轻读音节所占用的时间就不完全相同。后句话中,第一和第二个重读音节之间,第二和第三个重读音节之间分别由2个和1个轻读音节,而第三和第四个重读音节之间,第四和第五个重读音节之间各有4个轻读音节,为了保持5个重读音节之间大致相等的时间距离,第三至第五重读音节之间的轻读音节就要读得轻而快。中国学生对英语的这一特点较难把握,往往是按汉语习惯把每个音节(字)说得都很清楚,而不习惯把几个轻读音节压缩在一起,快速而含糊地读出来,因而听起来不是很自然。另外,在音节的衔接(juncture)方面,英语有汉语中所没有的连读(liaison)现象,也会给初学者带来一定的困难。在英语学习中,许多人可以发好一个单词的音,却说不出流畅、连贯的句子;能听懂英语单词,却听不懂连贯的句子。这种现象,我认为,主要原因之一就是他们没有掌握好英语中的连读。英语中有许多词是以辅音结尾的,在与紧接他们后面的一个词词首的元音连起来念,就产生了连读现象。但实际上汉语中也存在这种连读,只是我们平常没有意识到。汉语的连读一般出现在感叹句中,如:我的天哪! Wo de tiBn B好苦哇! HBo ku B然而汉语的连读范围不像英语连读现象那么普遍,而且大多数字以韵母结尾,使连读受到很大限制,所以学生在碰到英语连读时就会感到非常困难,同时也极大地限制了学生的听力发展。同化现象也是英语中最常见的一种音变现象,在连贯的说话或朗读中,音与音之间的相互影响是很自然的。其实,在汉语中也存在着类似的现象,如:面包 miBn-bBo → miBm-bBo难免 nBn-miBn → nBm-miBn这里的“面”和“难”都以/n/结尾,但因为受后面音/b/和/m/(双唇音)的影响,因此,“面”、“难”后面的/n/音就同化为双唇音/m/了。音渡指语音结构中两个音段界限之间的停顿过渡。普通话和英语两种语言中,音渡都有辨义功能,普通话好的学习者,一般能够注意英语音渡,但要完全掌握,仍然需要大量实践。四、结束语普通话和英语在发音的特征与规律、音位的数量与性质等方面都存在异同,而且差异性大于相似性,在二者相似性较强的方面,正迁移作用较为明显;二者差异表现明显的方面,负迁移作用却占了上风。既然普通话在英语语音学习中有“正迁移”和“负迁移”两方面的双重作用,因此,在英语语音教学中教师应与学生一起,尽量克服普通话对英语语音学习的干扰,促进普通话对英语语音学习的积极作用。在教学中教师帮助学生克服干扰时要突出要害,使学生深刻理解两种语言在发音方法以及语言表达方式上的异同。根据对比分析的理论观点,通过描写、选择、对比、预测对比分析的步骤,对普通话和英语进行科学的结构分析,找出两者之间的区别,以及区别程度的大小。通过这种有意识地对英汉语音系统进行对比分析,帮助学生做出有意义的概括,培养学生英汉语音系统差异的敏感性。正如吕淑湘在《中国人学英语》一文中指出:对于中国学生最有用的帮助就是让他认识英语和汉语的差别,对每一个具体问题,都尽可能用汉语的情况来跟英语作比较,让他通过这种比较得到更深刻的体会。中国学生必须认识到汉语、英语的差异,警惕汉语的干扰,尽量在英语学习中克服,避免汉语的干扰,这样才能更有效全面地学习英语。通过以上的讨论,很难说普通话好的学习者,英语语音就一定好;也不能说普通话不好的学习者英语语音就一定不好。影响英语语音学习迁移的因素很多,包括普通话和英语之间的异同因素、个体对异同因素的理解程度、知识经验的概括水平。此外,情境也参与迁移活动;学习者的主观能动性、个体特征等都是语言迁移得以产生的必要条件。普通话对英语语音的迁移作用绝非是单一的,两种语言之间的相似性也不能决定迁移的程度,它涉及多种不同的主客观影响因素,应综合考虑。孤立地研究某一因素或某一类型的迁移,不利于真正揭示迁移的本质,对英语语音学习也无实质性的助益。普通话好,只能说从语言学习的态度、方法等方面具备了发生语言迁移的可能性,但是否能克服语言负迁移的影响,真正发挥语言正迁移的作用于英语学习,还需要学习者发挥主体作用,了解一定的英语语音、音位理论知识,按照英语的语音、音位规律,掌握发音技巧,通过大量的训练,才能有较好的英语语音,说地道的英语。参考文献:1. D. .Educational Psychology:A Cognitive View〔M〕.New York:Holt,Rinehart and Winston,1968.2. 冯忠良.结构—定向教学的理论(上)[M].北京:北京师范大学出版社,1992.3. 蒋祖康.第二语言习得研究[M].北京:外语教学与研究出版社,. . Linguistic Across Culture[M].Ann Arbor: University of Michigan Press,. . Syntactic Structure[M].The Huge:Mouton,. 李庭芗.英语教学法[M].北京:高等教育出版社,. 张凤桐.英国英语语音学和音系学[M].成都:四川大学出版社,1998.8. 秦秀白.英语通论[M].武汉:华中师大出版社,1988.
什么意思???
126 浏览 4 回答
228 浏览 5 回答
291 浏览 4 回答
316 浏览 3 回答
285 浏览 5 回答
326 浏览 3 回答
217 浏览 3 回答
263 浏览 3 回答
123 浏览 5 回答
304 浏览 4 回答
333 浏览 4 回答
118 浏览 3 回答
89 浏览 3 回答
332 浏览 6 回答
300 浏览 3 回答