课程地址:
情感分析 (Sentiment analysis)又可以叫做 意见抽取 (Opinion extraction) 意见挖掘 (Opinion mining) 情感挖掘 (Sentiment mining) 主观分析 (Subjectivity analysis)等等。
引用的论文: Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. EMNLP-2002, 79—86. Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. ACL, 271-278
另外需注意,Binarized (Boolean feature) Multinomial Naïve Bayes不同于Multivariate Bernoulli Naïve Bayes,MBNB在文本情感分析上的效果并不好。另外课中也提到可以用交叉验证的方式进行训练验证。
下面罗列了一些比较流行的词典:
当我们拿到一个词我们如何判断他在每个类别中出现的概率呢?以IMDB影评为例
但是!我们不能用单纯的原始计数(raw counts)方法来进行打分,如下图
可以看出,这些否定词同样可以作为单词极性的一个判断依据。
具体步骤为:
联合概率 / 独立的两个概率乘积
之后我们可以看一下统计结果,分别来自于用户好评和差评的统计:
可以看到极性划分的还不错
转自csdn