由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem),即漩涡不生不灭定理: 正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡.反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡. 描述流体运动的两种方法之一:拉格朗日法 拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动. 以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志. 任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数 拉格朗日法基本特点:追踪流体质点的运动 优点:可直接运用固体力学中质点动力学进行分析 微积分中的拉格朗日定理(拉格朗日中值定理) 设函数f(x)满足条件: (1)在闭区间〔a,b〕上连续; (2)在开区间(a,b)可导; 则至少存在一点ε∈(a,b),使得 f(b) - f(a) f'(ε)=-------------------- 或者 b-a f(b)=f(a) + f(ε)'(b - a) [证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);(x)在[a,b]连续;(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证] 数论中的拉格朗日定理 [编辑本段] (拉格朗日四平方和定理) 每个自然数均可表示成4个平方数之和.3个平方数之和不能表示形式如4k(8n+ 7)的数.如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和.