发动机电控技术作为降低发动机排气污染,提高其动力性和经济性的一个重要手段,下面是我为大家精心推荐的汽车发动机电控技术论文,希望能够对您有所帮助。
汽车电控发动机故障检修
【摘要】本文就汽车电控发动机无法起动的故障进行分析,指出了故障诊断与排除的方法。
【关键词】电控发动机;故障;诊断;排除
中图分类号:F407文献标识码: A
随着电控燃油喷射技术的发展和维修认识水平的不断提高,现代轿车中在对装有电控燃油喷射发动机的汽车进行维修时,使用故障诊断仪对发动机电控单元(ECU)进行检测,并根据ECU存储的故障代码进行检修,大多数都能判明故障可能发生的原因和部位,会给维修人员的工作带来很大的方便。
运用数据流进行电控发动机故障的诊断,首先要打好理论基础,有了这些理论基础,在查找故障时就会找出问题的主要根源进行分析;然后要了解各传感器数据的表现形式。结合实际维修工作中的维修实例,谈谈运用“数据流”进行电控系统故障诊断的体会。
1.利用“静态数据流”分析故障
静态数据流是指接通点火开关,不起动发动机时,利用故障诊断仪读取的发动机电控系统的数据。例如进气压力传感器的静态数据应接近标准大气压力(100-102kPa);冷却液温度传感器的静态数据凉车时应接近环境温度等。下面是利用“静态数据流”进行诊断的一个实例:故障现象:一辆捷达王轿车,在入冬后的一天早晨无法起动。检查与判断:首先进行问诊,车主反映:前几天早晨起动很困难,有时经很长时间也能起动起来,起动后再起动就一切正常。
一开始在别的修理厂修理过,发动机的燃油压力和气缸压力、喷油嘴、配气相位、点火正时以及火花塞的跳火情况都做了检查,也没有解决问题。通过对以上项目重新进行仔细检查,同样没发现问题,发动机有油、有火,就是不能起动,到底是什么原因呢?
后来发现,虽经多次起动,可火花塞却没有被“淹”的迹象,这说明故障原因是冷起动加浓不够。如果冷起动加浓不够,又是什么原因造成的呢?冷却液温度传感器是否正常呢?
用故障诊断仪检测发动机ECU,无故障码输出。通过读取该车发动机静态数据流发现,发动机ECU输出的冷却液温度为105℃,而此时发动机的实际温度只有2-3℃,很明显,发动机ECU所收到的水温信号是错误的,说明冷却液温度传感器出现了问题。为进一步确认,用万用表测量冷却液温度传感器与电脑之间线束,既没有断路,也没有短路,电脑给冷却液温度传感器的5V参考电压也正常, 于是将冷却液温度传感器更换,再起动正常,故障排除。
直接观察法
不使用工具,由维修人员凭借丰富的维修经验,通过向司机询问详细的情况,如,故障现象或症状;故障发生频率;是否进行过检修,以及发生故障时的外在环境(气候,道路情况、发动机情况等);要在检修时,启动发动机,听发动机的声音,并以此来检修判断是否存在漏气、杂音等现象,并判断检修部位的部件是否可正常运转;随后要对车辆进行基本项目的检查,以确定是否有故障原因存在,比如车辆的其他部件是否有损坏的地方,对于电气线路的连接器或接头是否有松动的地方,系统的导线是否存在短路,接错,烧焦的痕迹,在接线中管路是否存在折断的问题等;用试车的方法再现故障,以判定故障原因。
调取故障码:对检查车辆进行了解,掌握检查车辆的数据以及电控系统所有部件的准确位置。以及接线图,接线和检测的办法,包含检测仪器的使用;要操作中结合车辆要求的操作程序进入自诊断状态,在系统中获取到故障代码,根据提示,快速的找到发生故障的部位,并进一步检测来确定故障的存在点,并确定故障与前的现象的一致性,以对故障原因进行判断和确认。因此,调取故障码之前,要检查车辆发动机,通过基本检查,来对故障进行研究。由于车辆的车型并异让不同的车型的检查方法、条件和步骤都有不同的并异,因此要严格按照车辆说明书上的资料要求,检修车辆维修资料。
环境模拟法
由于发动机电控系统的故障通常是发生在特定的环境中,而电控系统中的电子元件对于环境的变化较为敏感,如对于温度较高的环境、颠簸剧烈的环境、阴雨雪天的潮湿环境。对于环境因素的故障,又可采用三种环境模拟进行诊断。一是加热环境模拟法。基于发动机电控系统在热车时受热后易发生故障,如一些电子元件、导线束、传感器和执行器等,由于在热车时易受热,引发故障,因此要模拟环境再现。可在发动机启动后,使用电吹风等进行局部加热,假如加热到某一个电子元件时故障出现,则说明该部件与故障有关。注意:在加热时,温度不可高于60℃;对电子元件进行加热时,不可以直接加热ECU中的电子元件。二是采用加湿环境模拟法。当电控系统故障的出现时间是在阴雨的天气,刚可采用加湿模拟法来进行检测,以再现高湿度的环境。
2.利用“动态数据流”分析故障
动态数据流是指接通点火开关,起动发动机时,利用诊断仪读取的发动机电控系统的数据。这些数据随发动机工况的变化而不断变化,如进气压力传感器的动态数据随节气门开度的变化而变化;氧传感器的信号应在之间不断变化等。通过阅读控制单元动态数据,能够了解各传感器输送到ECU的信号值,通过与真实值的比较,能快速找出确切的故障部位。
有故障码时的方法
可重点针对与故障码相关的传感器的数据进行,分析是什么导致数据的变化,以找出故障原因所在。
故障现象:一辆桑塔纳轿车(出租车),百公里油耗增加1L。检查与判断:车主反映:前几天换了火花塞,调整了点火正时,油耗还是高,通过与车主交流确认不是油品的问题。于是连接故障诊断仪,进入“发动机系统”,读取故障码为“氧传感器信号超差”,是氧传感器坏了吗?进入“读测数据块”,读取16通道“氧传感器”的数据,显示为不变。
氧传感器长时间显示低于的数值,说明两点:一是说明混合气稀,二是说明氧传感器自身信号错误。是混合气稀吗?通过发动机的动力表现来看,不应是混合气稀,那就重点检查氧传感器,方法是人为给混合气加浓(连加几脚油),同时观察氧传感器的数据变化情况。通过观察,在连加几脚油的情况下,氧传感器的数据由“”微变为“”,也就是说几乎不变,进一步检查氧传感器的加热线电压正常,说明氧传感器损坏。更换氧传感器,再用诊断仪读其数据显示变化正常,至此维修过程结束。第二天,车主反映油耗恢复正常,故障排除。这是一起典型的由氧传感器损坏引起的油耗高的故障。
无故障码时的方法
通过对基本传感器信号数据的关联分析和定量对应分析来确定故障部位。
故障现象:一汽佳宝微面,加速无力、加速回火,有时急加速熄火。检查与判断:初步判定是混合气过稀,为了证明这一点,我用两个方法进行了验证。
一个方法是拆下空气滤清器,向进气道喷射化油器清洗剂,与此同时进行加速试验,明显感到加速有力,也不回火,故障现象消失,这可以证明混合气过稀的判断;另一个方法是连接诊断仪,读取故障码,显示无故障码;读取数据流,观察氧传感器的数据,显示在左右徘徊,加几脚油门,氧传感器数据立即越过上升到,然后其数据又回到左右徘徊,这说明氧传感器是好的,因为它在人为对混合气加浓后,数据反应及时,变化正常,同时也证明混合气确实是过稀。是什么原因造成混合气过稀呢?通过分析,主要考虑进气压力传感器和燃油系统油压。首先判断进气压力传感器,进入“读测数据流”,读取进气压力传感器的数据,显示:静态数据1010mbar,为大气压力,正常;怠速时为380mbar,基本正常;急加速时数据可迅速升至950mbar以上,这些数据及其变化都表明,进气压力传感器基本正常。接下来开始检测油压,但由于油压表坏了,无法测量燃油系统油压,只好直接更换油泵。更换油泵后试车,故障现象消失,故障排除。最后的结果说明故障是因为油泵的供油能力不足导致混合气过稀而造成的。
3.结束语
运用“数据流”进行故障分析,便于维修人员了解汽车的综合运行参数,可以定量分析电控发动机的故障,有目的地去检测更换有关元件,在实际维修工作中可以少走很多弯路,减少诊断时间,极大地提高工作效率。
参考文献:
[1]张龙发.汽车发动机电控技术与检修[M].北京:电子工业出版社,2007.
[2]沙莎.浅谈汽车电控发动机的维修方法[J].黑龙江科技信息,2011(28):28.
[3]刘晓明.浅谈电控发动机常见故障及检修[J].黑龙江国土资源,2011(6):51.
点击下页还有更多>>>汽车发动机电控技术论文
汽车上电控技术的应用,提高了汽车的动力性、经济性、环保性、舒适性,与此同时,需要大量的先进的检测设备对汽车进行故障诊断。我们培养的学生将来走上工作岗位要会利用检测设备对车辆进行检测,并根据检测结果进行故障分析的。...
汽油机电控燃油喷射系统的点火控制(上)XXX(XX汽车电器研究所 )摘要:在发动机控制系统中,电控点火装置对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。分别介绍了它们的控制原理、控制方式、控制方法、控制电路。在发动机的集中电控系统中, ECU (电子控制器)是一种电子综合控制装置。它不仅用来控制燃油喷射系统,同时还具有点火控制、怠速控制、排放控制、进气控制、增压控制、自诊断、失效保护和备用控制等多项控制功能。其中的点火控制是重要功能之一。在发动机控制系统中,电控点火装置(Electronic Spark Advance,简称ESA)对发动机的点火控制包括点火提前角控制、通电时间控制和爆震控制3个方面。1发动机点火控制的发展在传统的化油器式汽油机中,点火控制系统经过了传统式(触点式)向无触点式发展的过程。在这一过程中,系统中的分电器仍一直采用机械式离心和真空提前机构来控制发动机的点火提前角。燃油喷射控制系统经历了机械控制(K系统)、机电混合式控制(K-E系统)到电子控制(EFI系统)的过程。随着EFI系统的出现和发展,点火控制系统开始采用电控点火装置(ESA)。EFI系统的点火控制随着电子工业的发展也经历了普通(传统)式到电控式的过程。在K系统或带普通分电器式的EFI系统中,由于仍采用机械式离心和真空提前机构,不能实现对影响发动机工况的多种因素的多元及非线性控制,这类EFI系统被称为普通EFI系统。而采用电控点火装置(ESA)的EFI系统中,去掉了分电器的机械式离心和真空提前机构,甚至去掉了分电器,其功能完全由ESA来承担,它可以使发动机在任何工况下均处于最佳点火提前状态,并实现3方面的功能:点火提前角控制、通电时间控制和爆震控制。2ESA的点火提前角控制在ECU中,预先存储记忆发动机在各种工况及运行条件下最理想的点火提前角。发动机运转时, ECU根据发动机的转速和负荷信号,确定基本点火提前角,并根据其他有关信号进行修正,最后确定点火提前角,并向点火电子组件输出点火指示信号,以控制点火系统的工作。2·1最佳点火提前角通常把发动机发出功率最大和油耗最小时的点火提前角称为最佳点火提前角。对现代汽车而言,最佳的点火提前角不仅应保证发动机的动力性和燃油经济性都达到最佳,还必须保证排放污染最小。2·2影响点火提前角的因素2·2·1发动机转速当发动机转速升高时,点火提前角相应增大(但非线性关系),在普通式的EFI系统中,由于采用的是机械式离心提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·2进气歧管绝对压力(负荷)当进气歧管压力高(真空度小、负荷大)时,要求点火提前角小;当进气歧管压力低(真空度高、负荷小)时,要求点火提前角大。但它们也非线性关系。在普通式的EFI系统中,由于采用的是机械式真空提前调节器,所以调节曲线与理想点火调节曲线相差较大。当采用ESA时,可以使发动机的实际点火提前角接近于理想的点火提前角。2·2·3汽油的辛烷值发动机在一定条件下,会出现爆震现象。爆震使发动机动力下降、油耗增加、发动机过热,对发动机极为有害。发动机的爆震与汽油品质有密切关系,常用辛烷值来表示汽油的抗爆性能。汽油的辛烷值越高,抗爆性越好,点火提前角可增大;辛烷值越低,抗爆性越差,点火提前角则应减小。在无电控的普通点火系统中,是靠人工对分电器初始位置进行调节来实现的。在EFI中,为了适应不同辛烷值的汽油的需要,在ECU中存储了2张点火正时图,在实际使用中,可根据不同的汽油品种进行选择。在出厂时,一般开关设定在无铅优质汽油的位置上。2·2·4其它因素最佳点火提前角还与发动机燃烧室的形状、燃烧室内温度、空燃比、大气压力、冷却水温度等因素有关。在普通EFI系统中,当上述因素变化时,系统无法对点火提前角进行调整。当采用ESA时,发动机在各种工况和运行条件下,都能提供理想的点火提前角,因此发动机的动力性、经济性和排放都可以达到最佳。2·3点火提前角控制系统的组成及功用(表1)表1点火提前角控制系统的组成及功用名称功用传感器空气流量计(用于L型EFI)进气歧管绝对压力传感器(用于D型EFI)检测进气量分电器曲轴位置传感器(NE信号)检测曲轴角度(转速)凸轮轴位置传感器(G1、G2信号)检测凸轮轴(曲轴)角度基准位置节气门位置传感器向ECU输入点火提前角修正用信号水温传感器检测发动机冷却水温度,向ECU输入点火提前角修正用信号起动开关(起动信号)向ECU输入发动机正在起动中的信号空调开关A/C向ECU输入空调的工作状态(ON、OFF)信号车速传感器检测车速,向ECU输入车速信号空档起动开关检测换档手柄置于N档或P档爆震传感器检测发动机爆震信号点火电子组件(点火模块)根据ECU输出的点火控制信号,控制点火线圈初级电流的通断,产生次级高压。同时,向ECU反馈点火确认信号ECU根据各传感器输入的信号,计算出最佳点火提前角,并将点火控制信号输送给点火电子组件2·4点火提前角的控制方式2·4·1点火正时控制在ESA中,点火提前角的控制包括发动机起动期间和起动后的2种基本情况。a·起动期间点火时间控制(图1a)当发动机在起动期间时,转速较低(通常在500 r/min以下),由于进气歧管压力信号或进气量信号不稳定,因此常将点火时间固定在初始点火提前角(其大小随发动机而异)。此时点火时刻与发动机工况无关,故不经ECU计算,直接由传感器信号控制一个固定的初始点火提前角。当发动机转速超过一定值时,自动转换为由ECU的点火正时信号IGT控制。b·起动后点火时间控制(图1b)根据有关传感器送来的信号, ECU计算出最佳点火时刻,输出点火正时信号IGT,控制点火电子组件点火。此时,点火时间由进气歧管压力信号(或进气量信号)和发动机转速确定的基本点火提前角和修正量决定。修正项目随发动机而异,并根据发动机各自图1点火时间控制(a)起动期间点火时间控制(b)起动后点火时间控制的特性曲线进行修正。以上2种情况可归纳如下:
汽车电控发动机系统认识一、发动机电子控制系统的组成与原理电喷发动机是采用电子控制装置.取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。 电喷发动机按喷油器数量可分为多点喷射和单点喷射。发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射。发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射。 汽油喷射发动机与化油器式发动机相比,突出的优点是能准确控制混合气的质量,保证气缸内的燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机的充气效率,增加了发动机的功率和扭矩。电子控制燃油喷射装置的缺点就是成本比化油器高一点,因此价格也就贵一些,故障率虽低,一旦坏了就难以修复(电脑件只能整件更换),但是与它的运行经济性和环保性相比,这些缺点就微不足道了。 液力控制的喷射技术,早在30年代就应用在飞机发动机,50年代开始应用在德国奔驰300BL轿车发动机上。集成电路的出现使电子技术能在发动机上得到应用,一种更好的汽油喷射装置——电子控制汽油喷射技术也就应运而生了。 结构任何一种电子控制汽油喷射装置,都是由喷油油路,传感器组和电子控制单元(微型电脑)三大部分组成。当喷射器安装在原来化油器位置上,称为单点电控燃油喷射装置;当喷射器安装在每个气缸的进气管上,称为多点电控燃油喷射装置。 原理喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成,电控单元发出的指令信号可将喷射器头部的针阀打开,将燃油喷出。传感器好似人的眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给“中枢神经”的电子控制单元。电子控制单元是一个微计算机,内有集成电路以及其它精密的电子元件。它汇集了发动机上各个传感器采集的信号和点火分电器的信号,在千分之几十秒内分析和计算出下一个循环所需供给的油量,并及时向喷射器发出喷油的指令,使燃油和空气形成理想的混合气进入气缸燃烧产生动力。 历史从60年代起,随着汽车数量的日益增多,汽车废气排放物与燃油消耗量的不断上升困扰着人们,迫使人们去寻找一种能使汽车排气净化,节约燃料的新技术装置去取替已有几十年历史的化油器,汽油喷射技术的发明和应用,使人们这一理想能以实现。早在1967年,德国波许公司成功地研制了D型电子控制汽油喷射装置,用在大众轿车上。这种装置是以进气管里面的压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定的缺点。针对这些缺点,波许公司又开发了一种称为L型电子控制汽油喷射装置,它以进气管内的空气流量做参数,可以直接按照进气流量与发动机转速的关系确定进气量,据此喷射出相应的汽油。这种装置由于设计合理,工作可靠,广泛为欧洲和日本等汽车制造公司所采用,并奠定了今天电子控制燃油喷射装置的邹型。至1979年起美国的通用,福特,日本的丰田,三菱,日产等汽车公司都推出了各自的电子控制汽油喷射装置,尤其是多气门发动机的推广,使电子控制喷射技术得到迅速的普及和应用。到目前为止,欧美日等主要汽车生产大国的轿车燃油供给系统,95%以上安装了燃油喷射装置。从99年1月1日起,只有采用电子控制汽油喷射装置的轿车才能准予在北京市场上销售。 现在电喷发动机(电子控制汽油喷射式发动机)的使用在轿车中越来越普遍,有消息称化油器式发动机轿车在我国各大城市将很快被“消灭”。因此车主对电喷发动机的了解变得越来越重要,只有了解了电喷发动机的“脾气”,您才能更好地使用和养护爱车。 电喷发动机与化油器式发动机有很大的区别,在使用操作方法上也颇有不同。起动电喷发动机时(包括冷车起动),一般无需踩油门。因为电喷发动机都有冷起动加浓、自动冷车快怠速功能,能保证发动机不论在冷车或热车状态下顺利起动;在起动发动机之前和起动过程中,像起动化油器式发动机那样反复快速踩油门踏板的方法来增加喷油量的做法是无效的。因为电喷发动机的油门踏板只操纵节气门的开度,它的喷油量完全是电脑根据进气量参数来决定;在油箱缺油状态下,电喷发动机不应较长时间运转。因为电动汽油泵是靠流过汽油泵的燃油来进行冷却的。在油箱缺油状态下长时间运转发动机,会使电动汽油泵因过热而烧坏,所以如果您的爱车是电喷车,当仪表盘上的燃油警告灯亮时,应尽快加油;在发动机运转时不能拔下任何传感器插头,否则会在电脑中显现人为的故障代码,影响维修人员正确地判断和排除故障。 另外要注意的是,尽量不要在电喷车上装用大功率的移动式无线电话系统及无线电设备,以防止无线电信号对电脑工作产生干扰。二、电子控制燃油喷射系统电子控制燃油喷射系统(EFI)——简称汽油喷射。它是汽车汽油发动机取消化油器而采用的一种先进的喷油装置。使用EFI,汽车发动机燃烧将更充分,从而提高功率,降低油耗,实现低公害排放的目的。当EFI功能与发动机其它功能结为一体时,称“发动机管理系统(EMS)”,这将达到更高要求的环保目标。电子控制燃油喷射系统EFI是由电控单元ECU直接控制燃油喷射的系统。按空气量检测方式的不同可分为:量流量检测方式(L型)、速度密度检测方式(D型)和节流速度检测方式。;在常用的主要是D型和L型EFI喷射系统。两个系统的主要区别在于喷油持;时间控制方式,D型取决于进气管压力和节气门开度大小;L型取决于发动机转速和实际进入汽缸的空气量。电子控制燃油喷射系统EFI一般由电子控系统、空气供给系统、燃油供给系统三个子系统组成。1)空气供给系。空气供给系的功用是根据发动机工作的需要,控制和检测人汽缸的空气量。一般由空气滤清器、空气流量传感器、节气门位置传感器、气温度与进气压力传感器、进气管和动力腔等组成。2)燃油供给系。燃油供给系功用是向发动机各个汽缸供给混合气燃烧所需燃油量。一般由燃油箱、电动燃油泵、输油管、燃油滤清器、油压调节器、燃分配管、喷油器和回油管等组成。3)电子控制系统。功能是根据发动机运行条件和工况,确定燃油的最佳喷量。该系统由电子控制装置ECU、信号输入装置(传感器)和执行部件三部组成。电子控制装置ECU是汽油喷射系统的大脑,它由模拟/数字转换器、只读储器(ROM)、随机存储器(RAM)、逻辑运算装置及一些数据寄存器组成,一个控制中心。它能根据收集到的信息,进行综合运算与判断,输出控制发动的指令。信号输入装置是指安装在发动机上的各种传感器。传感器是一种信号转换装其功用是检测发动机运行状态的各种电量参数、物理量和化学量等,并将这参量转换成计算机能够识别的电量信号输入ECU。属于执行部件的一般有:电动燃油泵、喷射器、输出级及点火线圈、活性炭虑器电磁阀、入氧探测器的加热器、节流阀控制部件等。(一)、空气供给系统组成:空气计量装置(空气流量计或进气压力传感器)、怠速控制阀、补充空气阀、惯性增压进气系统、节气门位置传感器、进气温度传感器等(后两个传感器在下讲介绍)空气供给系统功用:供给与发动机负荷相适应的清洁空气,直接和间接计量空气质量,与喷油器喷出的汽油形成最佳混合气。较早期空气供给系统现在用空气供给系统1.翼片式空气流量计(1)主要件功能缓冲片:缓冲室内空气对缓冲片的阻尼作用,使翼片转动平稳旁通空气调节螺钉:调节怠速时旁通空气量的大小,从而调节怠速混合气的成分电位计:将翼片转动的角度转换为电信号(2)工作原理翼片全关时,没有进气量,产生电压信号最强翼片打开时,进气量由小变大,产生电压信号有强变弱翼片全开时,进气量最大,产生电压信号最弱(3)控制电路下图为早期凌志es300发动机翼片式空气流量计,集成有三个元件空气流量计:(电源)、(空气流量信号)、e2(接地)进气温度传感器:(温度信号)、e1(接地)燃油泵开关2.卡门漩涡式空气流量计(1)光电式1)结构与原理卡门漩涡原理:流体流过涡流发生体时,流体会产生系列漩涡,且漩涡频率与流体流速成正比。光电式传感器:由发光二极管、振动反光镜、光敏三极管组成。漩涡频率通过压力孔使振动反光镜振动,光敏三极管接受因振动产生变化的光能,转化为脉冲电压信号,该脉冲信号与漩涡频率成正比2)控制电路某款车型卡门漩涡式空气流量计,集成有二个元件空气流量计:v1(电源)、v2(空气流量信号)、e(接地)进气温度传感器:(温度信号)、e1(接地)(2)超声波式1)结构与原理卡门漩涡原理:同上述超声波式传感器:由超声波发射器、超声波接受器组成。漩涡频率使超声波发射器产生的超声波发生变化,超声波接受器接受该超声波转化为脉冲电压信号,该脉冲信号与漩涡频率成正比2)流量计接口卡门漩涡式空气流量计集成有三个元件空气流量计进气温度传感器大气压力传感器3.热线式空气流量计(1)组成一般还带有自洁电路:熄火后自动加热帕丝1000°c维持1s,烧掉帕丝上的灰尘(2)工作原理,控制电路自动控制电桥平衡当进气量越大,因进气的散热使帕热丝电阻减小,电桥平衡受到破坏。控制电路自动增大电流,增大帕热丝电阻使电桥重新恢复平衡。因电路中电流的增大,使精密电阻的电位增大。该电位与进气量成正比,作为进气量信号电压传输给发动机(3)控制电路下图为凌志ls400发动机热线式空气流量计原车电路图空气流量计:vg(空气流量信号)、(接地)4.热膜式空气流量计(1)组成及原理工作原理:与热线式相同热膜:帕金属片固定在树脂薄膜上。优点是提高可靠性和耐用性,不粘附灰尘(2)控制电路图为桑塔纳2000ajr发动机热膜式空气流量计原车电路图空气流量计:端子2(电源12v)、端子4(参考电压5v)、端子5和3(空气流量信号与接地)(二)、进气压力传感器1.半导体压敏电阻型(1)结构示意图主要特点:尺寸小、精度高、成本低,响应速度快,输出信号与进气歧管绝对压力呈线性关系,测量精度基本不受温度的影响(2)工作原理(视频)进气歧管压力越高(真空度越低)→硅膜片变形越大→应变电阻变化越大→电信号放大输出给发动机ECU(3)控制电路图为皇冠轿车2jz-ge发动机进气压力传感器电路图进气压力传感器:端子电源5v)、端子(进气压力信号电压)、端子e2(传感器接地)2.真空膜盒型(1)结构歧管真空度低歧管真空度高(2)工作原理电感式传感器(线性变化压差变压器):进气歧管压力变化→铁芯移动→输出信号电压变化→输送给发动机ECU(三)、怠速控制阀1.怠速进气量的控制方法(1)旁通空气式1)特点怠速时,节气门完全关闭,怠速进气量由怠速控制阀控制的旁通空气道提供2)怠速控制阀的类型步进电机型旋转电磁阀型占空比控制电磁阀型开关控制电磁阀型(2)节气门直动式怠速进气量由节气门较小的开度提供,不设旁通空气道。节气门在怠速状态的开度大小由发动机ECU通过怠速电机控制2.步进电机型怠速控制阀(1)组成(2)步进工作原理定子相线按1-2-3-4顺序搭铁,定子n极逆时针移动,转子逆时针步进定子相线按1-4-3-2顺序搭铁,定子n极顺时针移动,转子顺时针步进转子转动一圈分为4个步级进行,每级步进90°(3)工作过程(视频)转子八对磁极定子a、b各16个爪极,定子线圈a的两组线圈与定子线圈b的两组线圈反极性,定子共分为32个磁极爪步进一个爪极转角°,步进32步转子转一圈,丰田车系步进电机0-125步(4)定子绕组控制电路定子输入脉冲(5)步进电机怠速控制阀控制电路3.占空比控制电磁阀型(1)工作原理(视频)是一个比例电磁阀:占空比大,驱动电流大,电磁吸力大,怠速控制阀开度大(2)占空比控制电磁阀型怠速控制阀控制电路四、补充空气阀1.功用(视频)提高冷起动怠速,加快暖机预热过程,增加暖机过程中所需的空气量,也称高怠速控制发动机完成暖机后,通过辅助空气阀的空气被自动切断,恢复正常怠速现代发动机集中管理系统,高怠速控制由怠速控制阀完成2.石腊式补充空气阀(1)怠速状态(2)热起后状态当冷却液温度>80℃时,阀门完全关闭3.双金属片式补充空气阀(1)怠速状态双金属片的动作由加热线圈通电时间或发动机水温决定当水温<-20℃时,阀门全开当水温>60℃时,阀门全闭(2)热起后状态五、惯性增压进气系统1.组成与功用(视频)功用:利用进气气流惯性所形成的压力波来提高充气效率三、电子控制点火系统1、电子控制系统的信号输入在有微处理器控制的点火系统中,控制系统输入多个传感器信号: 基准位置、曲轴转角、转速、水温、进气压力(或进气流量)、节气门位置等等。常见的脉冲信号发生器有磁脉冲发生器、金属探测传感器、霍尔效应传感器和光电传感器2、电子控制系统的控制策略在微处理器控制的点火系统中,电控单元(ECU)不仅可以产生一个点火信号,而且还可以对点火信号的位置(决定点火时刻)和形状(决定初级回路闭合角的大小)进行控制,因而控制系统的控制策略在很大程度上决定着点火系统的优劣和发动机性能指标的好坏。1、点火提前角的控制方法ECU根据汽油机的各种工况信号对点火时刻进行控制。首先根据发动机的转速和进气压力信号从存储器存的数据中找到相应的基本点火提前角,然后根据有关传感器信号值加以修正,得出实际的点火提前角。实际点火提前角由三部分组成:初始点火提前角、基本点火提前角和修正点火提前角。点火提前角的修正:暖机修正、过热修正、空燃比反馈修正、怠速稳定性的修正、爆震修正、最大和最小提前角控制2、闭合角的控制方法点火线圈的通电时间就是它以建立磁场的形式蓄积点火能量的时间,这段时间所对应的曲轴转角叫做闭合角。通电时间控制的原则是在不影响火花放电的前提下,保证点火线圈有足够的时间蓄积能量而又不会造成过热损失和破坏。3、曲轴位置的测量方法要做到对点火时刻的控制就必须精确测量曲轴的位置(在顺序喷射的燃油喷射系统中喷油时刻的控制也需测量曲轴的位置),方法主要有:计数器延时技术法、1度曲轴转角计数法、脉冲计数和延时计数综合法。4、爆震控制当发生剧烈爆震时,发动机各部分温度上升,使输出功率下降,严重时还会引起活塞烧结、活塞环粘着、轴承破坏和气门烧蚀等。推迟点火可以减轻甚至避免爆震,保震控制的目的就是根据爆震传感器的信号调整点火时刻使汽油发动机工作在临界爆震状态。5、无分电器点火系统的控制无分电器点火系统由于取消了分电器,所以可以消除配电部分的磨损和能量损失。同时由于配电部分不再有火花放电现象,所以极大地减少了电磁干扰。无分电器点火系统,根据结构和点火方式的不同,可以分为两缸同时点火(冗余火花方式)和每缸独立点火两种。四、辅助控制系统1、怠速控制怠速转速过高,会增加燃油消耗量。因此,怠速转速应尽可能低。但考虑到减少有害物的排放,怠速转速又不能过低。另外,考虑所有怠速使用条件下,如冷车运转与电器负荷、空调装置、自动变速器、动力转向伺服机构的接入等情况,它们都会引起怠速转速的变化,使发动机怠速不稳甚至会引起熄火现象。通常发动机输出动力时,其转速是由驾驶员通过油门踏板控制节气门开度,调节进气量的方法来实现的。但在怠速时,驾驶员的脚已离开油门踏板,驾驶员要对进气量进行适时调节已不可行,为此在大多数电控汽油喷射发动机上都设有不同类型的怠速转速控制装置。怠速时,节气门处于关闭状态,空气通过节气门缝隙及旁通节气门的怠速调节通道进入发动机,由空气流量计(或进气歧管压力传感器)检测该进气量,并根据转速及其它修正信号控制喷油量,使转矩与发动机本身内部阻力矩相平衡,保证发动机在怠速下稳定运转。当发动机的内部阻力矩发生变化时,怠速运转转速将会发生变化。发动机怠速控制装置的功能就是自动维持发动机怠速稳定运转。怠速控制(ISC)是通过调节空气通道面积以控制进气流量的方法来实现的。2、排放控制汽车发动机作为一个大气污染源,应该采取各种有效措施予以治理和改造。关于汽车发动机排气的控制和净化问题,各国都进行了大量的研究工作,研制了不少的技术措施。这些方法大致可分为:发动机本身的改进和增加排放净化装置。而由于发动机本身的改进,较难满足日益严格的排放法规和降低成本等要求,因此现代汽车采取了多种排放控制措施来减少汽车的排气污染,如三元催 化转换、废气再循环(EGR)、活性碳罐蒸发控制系统等。3、进气控制1)进气涡流控制在发动机上采用涡流控制阀系统,可根据发动机的不同负荷,改变进气流量去改善发动机的动力性能。图8-27为由ECU控制的涡流控制阀系统。由图8-28所示,进气孔纵向分为两个通道,涡流控制阀安装在通道©内,由进气歧管负压打开和关闭,控制进气管空气通道的大小。发动机小负荷或以低于某一转速运转时,受ECU控制的真空电磁阀关闭,真空度不能进入涡流控制阀上部的真空气室,涡流控制阀关闭。由于进气通道变小,产生一个强大涡流,这就提高了燃烧效率,从而可节约燃油。当发动机负荷增大或以高于某一转速运转时,ECU根据转速、温度、进气量等信号将真空电磁阀电路接通,真空电磁阀打开,真空度进入涡流控制阀,将涡流控制阀打开,进气通道变大,提高进气效率,从而改善发动机输出功率。2)进气惯性增压控制系统 进气惯性增压控制系统(ACIS)即谐波增压进气控制系统,是利用进气流惯性产生的压力波提高进气效率。一般而言,进气管长度长时,压力波波长大,可使发动机中低转速区功率增大;进气管长度短时,压力波波长短,可使发动机高速区功率增大。如果进气管长度可改变,则可兼顾增大功率和增大转矩,但一般过气管长度是不能改变的,因此利用惯性增压一般都按最大转矩所对应的转速区域利用。3)断缸控制汽车发动机尤其是大型轿车发动机的输出功率很大,又有较高的功率储备。但在城区行驶或在城外公路上行驶时,多数是处在较低的部分负荷下运行,这时发动机的效率不高。为了克服这一弊端,当发动机处于部份负荷下运行时,控制系统指令切断几个气缸的汽油供应与点火,停止几个气缸工作,则剩下各缸的工作效率得到增大,从而提高了发动机的效率并降低了燃油消耗。而当功率不能满足要求时,再恢复其余气缸工作。
318 浏览 4 回答
266 浏览 3 回答
86 浏览 3 回答
293 浏览 5 回答
81 浏览 4 回答
138 浏览 4 回答
242 浏览 4 回答
217 浏览 2 回答
126 浏览 4 回答
311 浏览 6 回答
89 浏览 3 回答
320 浏览 3 回答
322 浏览 4 回答
105 浏览 7 回答
334 浏览 8 回答