举例是论证的一种手段,也是最直观的,不让我举例,让我归缪么?你可以先简述量子力学的发展然后 论点1 使人们认识了微观,扩大了人们的视野,影响了人们的哲学观点(西方物理与哲学渊源很深) 用例子说明论点2 激发了人们的探索热情 以致20世纪初物理学突飞猛进 进而刺激了新的科技革命 例子论点3 量子理论用于实际(核能,计算机)为人们学习研究提供了工具与能源(核能现在还不明显,但100年以后石油煤烧完后呢) 例子等等等等
量子电动力学 量子电动力学(Quantum Electrodynamics,简写为QED),是量子场论中最成熟的一个分支,它研究的对象是电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子的产生和湮没、带电粒子间的散射、带电粒子与光子间的散射等等。它概括了原子物理、分子物理、固体物理、核物理和粒子物理各个领域中的电磁相互作用的基本原理。 量子电动力学是从量子力学发展而来。量子力学可以用微扰方法来处理光的吸收和受激发射,但却不能处理光的自发射。电磁场的量子化会遇到所谓的真空涨落问题。在用微扰方法计算高一级近似时,往往会出现发散困难,即计算结果变成无穷大,因而失去了确定意义。后来,人们利用电荷守恒消去了无穷大,并证明光子的静止质量为零。量子电动力学得以确立。量子电动力学克服了无穷大困难,理论结果可以计算到任意精度,并与实验符合得很好,量子电动力学的理论预言也被实验所证实。到20世纪40年代末50年代初,完备的量子电动力学理论被确立,并大获全胜。 量子电动力学认为,两个带电粒子(比如两个电子)是通过互相交换光子而相互作用的。这种交换可以有很多种不同的方式。最简单的,是其中一个电子发射出一个光子,另一个电子吸收这个光子。稍微复杂一点,一个电子发射出一个光子后,那光子又可以变成一对电子和正电子,这个正负电子对可以随后一起湮灭为光子,也可以由其中的那个正电子与原先的一个电子一起湮灭,使得结果看起来像是原先的电子运动到了新产生的那个电子的位置。更复杂的,产生出来的正负电子对还可以进一步发射光子,光子可以在变成正负电子对……而所有这些复杂的过程,最终表现为两个电子之间的相互作用。量子电动力学的计算表明,不同复杂程度的交换方式,对最终作用的贡献是不一样的。它们的贡献随着过程中光子的吸收或发射次数呈指数式下降,而这个指数的底,正好就是精细结构常数。或者说,在量子电动力学中,任何电磁现象都可以用精细结构常数的幂级数来表达。这样一来,精细结构常数就具有了全新的含义:它是电磁相互作用中电荷之间耦合强度的一种度量,或者说,它就是电磁相互作用的强度。 1965年诺贝尔物理学奖授予日本东京教育大学的朝永振一郎(Sin-Itiro Tomonaga,1906—1979),美国马萨诸塞州坎布里奇哈佛大学的施温格(Julian ,1918—1994)和美国加利福尼亚州帕萨迪那加州理工学院的费曼(Richard Phillips Feynman,1918—1988),以表彰他们在量子电动力学所作的基础工作,这些工作对基本粒子物理学具有深远的影响。 费曼、施温格和朝永振一郎的贡献就是用不同方法独立地异途同归地解决了这一困难,从而建立了量子电动力学的新理论体系。他们从不同的渠道运用“重正化”概念把发散量确切地归入电荷与质量的重新定义中,从而使高阶近似的理论结果不再会遇到发散。“重正化”的意思就是用一定的步骤把微扰论积分中出现的发散分离出去,吸收到相互作用耦合常数及粒子的质量中,并通过重新定义相互作用耦合常数和粒子的质量,来获得不发散的矩阵元,使计算结果可与实验对比。 有了重正化方法,量子电动力学获得了巨大成功,由此计算出来的电子反常磁矩和兰姆位移与实验结果相符达十几位量级。可见,量子电动力学是何等精确的理论。这一切既要归功于众多对现代物理学作过贡献的物理学家,更要归功于1965年这三位诺贝尔物理学奖获得者。 费曼1918年5 月11日出生于美国纽约市郊俄国移民犹太族家庭里,1935年进入麻省理工学院(MIT),先学数学,后转物理。1939年本科毕业,毕业论文发表在《物理评论》(.)上,内有一个后来以他的名字命名的量子力学公式。1939年9月在普林斯顿大学当惠勒()的研究生,致力于研究量子力学的疑难问题:发散困难。第二次世界大战中,参加洛斯阿拉莫斯科学实验室研制原子弹。1942年得普林斯顿大学理论物理学博士学位。战争结束后到康奈尔大学任教。自1951年起任加利福尼亚理工学院教授。 费曼于40年代发展了用路径积分表达量子振幅的方法,并于1948年提出量子电动力学新的理论形式、计算方法和重正化方法,从而避免了量子电动力学中的发散困难。目前量子场论中的“费曼振幅”、“费曼传播子”、“费曼规则”等均以他的姓氏命名。费曼图是费曼在四十年代末首先提出的,用于表述场与场间的相互作用,可以简明扼要地体现出过程的本质,费曼图早已得到广泛运用,至今还是物理学中对电磁相互作用的基本表述形式。 1958年费曼和盖尔曼合作,提出了弱相互作用的矢量-膺矢量型理论(即V-A理论,又称普适费米型弱相互作用理论)。这是经过20余年曲折发展以后所达到的关于弱相互作用的正确的唯象理论。这一理论为以后温伯格、萨拉姆和格拉肖建立电磁相互作用和弱相互作用的统一理论开辟了道路。在50年代前期,费曼还曾经从事发展液氮的微观理论的研究工作。 费曼的路径积分方法是他的独创性又一个鲜明的例证。 费曼总是以自己独特的方式来研究物理学。他不受已有的薛定谔的波函数和海森堡的矩阵这两种方法的限制,独立地提出用跃迁振幅的空间-时间描述来处理几率问题。他以几率振幅叠加的基本假设为出发点,运用作用量的表达形式,对从一个空间-时间点到另一个空间-时间点的所有可能路径的振幅求和。这一方法简单明了,成了第三种量子力学的表述法。 1968年费曼根据电子深度非弹性散射实验和布约肯()的标度无关性提出高能碰撞中的强子结构模型。这种模型认为强子是由许多点粒子构成,这些点粒子就叫部分子(parton)。部分子模型在解释高能实验现象上比较成功,它能较好地描述有关轻子对核子的深度非弹性散射、电子对湮灭、强子以及高能强子散射等高能过程,并在说明这些过程中逐步丰富了强子结构的物理图像。 1986年2月费曼应邀参加总统委员会,调查“挑战者”号失事原因。会议前一天,他先去喷气推进实验室了解情况,作了详细记录。当时众说纷纭,莫衷一是。他敏锐地注意到密封问题。会议令他失望,互相扯皮,推卸责任,没完没了地听取证人的证词。费曼要求再去调查,结果发现美国航天局的报告自相矛盾。他注意到,他们原来是用计算机分析橡胶的弹性,条件不合要求。有一将军问费曼,低温对橡胶有无影响?提醒了他注意到用于密封的O圈在-2℃可能失去弹性。费曼还注意到,在发射前火箭公司有一位工程师坚持不宜发射的意见,但经理在军方压力下同意了。进一步调查还表明,发射台的温度数据欠准。1986年2月,费曼公正地把真相公之于众。1986年2月11日在总统委员会开会论证时,费曼把一块与O圈材料相同的橡胶投入冰水中,证明“挑战者”号失事的原因就在于寒冷的气候。这件事曾经轰动了全世界,但是人们哪里知道,这时费曼正在顽强地与胃癌斗争,不久他就与世长辞了。 费曼的重要著作有:《量子电动力学》、《量子力学和路径积分》,与希布斯合著《光子强子相互作用》等。《费曼物理学讲义》(共三卷)是美国六十年代科学教育改革的重要尝试,虽然深度、广度过高,但不失为优秀参考读物。费曼在前言中写道:“我讲授的主要目的,不是帮助你们应付考试,也不是帮你们为工业或国防服务。我最希望做到的是,让你们欣赏这奇妙的世界以及物理学观察它的方法”。1973年诺贝尔物理学奖获得者贾埃沃()说过:费曼是对他影响最大的物理学家,而《费曼物理学讲义》是对他影响最深的书籍。这套讲义的特色是:引人入胜,丰富生动,论述精辟,富于启发。费曼透彻讲解了物理现象的本质和规律。费曼的自传:《别闹了,费曼先生》是一本备受欢迎的文学著作。 如果说费曼是一代奇才,则施温格也不愧为物理学家中的“莫扎特”。施温格1918 年2月12日出生于纽约,他自幼聪慧过人,在数学和科学方面显示出非凡的才能。由于多次跳级,14岁即高中毕业,进入纽约市立学院学习。他爱好自学,从图书馆中借阅了各种物理书籍,经常不到课堂听讲。据说,统计力学课他从未出席,却在期末考试中成绩突出,因为他推导的步骤比其他同学按课堂上学到的方法简捷得多。有人夸奖年轻的施温格说:“他对物理学就像莫扎特对音乐那样。”哥伦比亚大学的拉比教授非常欣赏施温格的才华,对人说:施温格已经知晓了物理学的 90%,其余的“只要几天就够了”。在拉比的推荐下,施温格转到哥伦比亚大学,并于1936年获学士学位,1939年获博士学位,时年21岁。然后到伯克利加州大学当了奥本海墨的研究助理。1941年到柏图大学任教,后来到芝加哥大学参加原子反应堆设计。为了避免卷入�拥�苹��┪赂裨?943年离开芝加哥,转到麻省理工学院,从事雷达系统的改进。正是这项工作使他对电磁辐射理论发生了兴趣,把工作重点转到量子电动力学的理论。1945年施温格应聘成为哈佛大学副教授,两年后升教授,成为该校最年轻的教授。就是在这段时期,施温格进行了重正化的研究。他的方法与费曼的不同,如果说费曼用的是“积分”方法,则施温格用的是“微分”方法,但是两种方法得到的结果是一样的。 量子电动力学的另一位奠基人朝永振一郎1906 年3月31日出生于日本东京,1929年毕业于京都大学理学部物理学科,随后在玉城嘉七郎研究室任临时见习研究生,3年之后,赴东京理化研究所,在仁科芳雄研究室当研究员,1937年留学德国,在海森伯的领导下研究原子核理论和量子理论,1939年底,回国接受东京帝国大学的理学博士学位。1941年,任东京文理科大学物理学教授,提出量子场论的超多时理论,第二次世界大战期间,曾经研究雷达技术中磁控管的理论,发表了《分割阳极磁电管理论》的论文,战后继续研究和发展他的超多时理论和介子耦合理论,同时参与《理论物理进展》的创办工作。朝永振一郎以他的超多时理论为基础,找到了一种避开量子电动力学中发散困难的重正化方法,利用这种方法,可以成功地解释兰姆位移和电子反常磁矩的实验。他的工作几乎与施温格和费曼同时。他们独立地完成了类似的研究,达到了同样的目的,真可谓殊途同归。他们的研究使得描写微观世界的量子电动力学理论成为一个精确的理论,并对以后的理论发展产生了深远影响。1949年,朝永振一郎应聘赴美国普林斯顿高级研究院工作,提出了高密度极限的多费密子体系的一维模型理论。回国后创建了东京大学原子核研究所。1956年以后,先后出任东京教育大学校长、日本学术会议会长、东京教育大学光学研究所所长。他还得到日本学士院院士、日本文化勋章以及好几个国家的科学院荣誉院士称号。1957年5月朝永振一郎曾率领日本物理代表团来中国访问并进行学术交流。朝永振一郎于1979年7月8日在东京病逝。
通信技术论文范文篇二 浅析量子通信技术 【摘要】量子通信作为既新鲜又古老的话题,它具有严格的信息传输特性,目前已经取得突破性进展,被通信领域和官方机构广泛关注。本文结合量子,对量子通信技术以及发展进行了简单的探讨。 【关键词】量子;通信;技术;发展 对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。 一、量子通信技术 (一)量子通信定义 到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。 从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。 (二)量子通信原理 量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。 利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。 (三)量子密码技术 从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。 (四)量子通信的安全性 从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。 从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。 二、量子通信应用与发展 和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。 在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在�潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。 三、结束语 量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。 参考文献 [1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497. [2]徐兵杰,刘文林,毛钧庆等.量子通信技术发展现状及面临的问题研究[J].通信技术,2014(5):463-468. [3]刘阳,缪蔚,殷浩等.通信保密技术的革命――量子保密通信技术综述[J].中国电子科学研究院学报,2012, 7(5):459-465. 看了“通信技术论文范文”的人还看: 1. 大学通信技术论文范文 2. 通信技术毕业论文范文 3. 通信技术论文范文 4. 关于通信工程论文范文 5. 大学通信技术论文范文(2)
物理学家,是指探索、研究世界的组成与运行规律的科学家。这是我为大家整理的关于物理学家学术论文,仅供参考!
对物理学家失误的解读
摘 要:通过在物理教学中客观介绍物理学家的失误,从而正确认识科学发展的曲折和科学家付出劳动的艰辛,并在实际探究的过程中体验物理学家研究问题的方法,发展科学探究所必需的创新思维,从而提高学生科学探究的能力。
关键词:失误;科学探究;创新思维
中图分类号:G420 文献标识码:A
文章编号:1992-7711(2012)10-081-1
在物理教学中,我们更多地介绍了物理学家成功的、正确的一面,而往往忽略了他们的失误。在物理教学中客观介绍物理学家的失误,通过对他们在特定历史条件下酿成失误原因的剖析,对中学物理教学具有积极的意义。
一、在物理教学中客观介绍物理学家的失误
事实上,物理大师也会走弯路,有失误。在物理学发展的过程中,这样的事例可以说是屡见不鲜的。发现放射性元素的贝克勒尔认为要找到比铀的放射性还要大得多的元素是不大可能的;牛顿推算光在介质中的速度比真空中大;电磁波的发现者赫兹由于实验的局限而错误地认为阴极射线不带电。
中子发现的历史更值得回顾。在查德威克发现中子前,在实验中已有迹象表明在核中可能存在一种中性子。例如,1930年德国物理学家玻特和他的学生利用α粒子轰击铍元素时,发现产生了一种穿透力极强的射线。后来居里夫人的女儿I?居里和她的丈夫约里奥对这种射线进行了研究。他们将这种射线射到石蜡上,测到了有反冲质子从石蜡放出,他们认为这反冲质子是由这种不带电的的射线所轰击出来的。但遗憾的是约里奥-居里夫妇和玻特等人都没能抛弃传统的旧观念,而断言为这种射线正是大家所知的Υ射线。太可惜了!尤其对约里奥-居里夫妇而言,只要根据打出质子的动能,仔细地推算一下,假如入射粒子是Υ光子的话,那么它的能量将达几十兆电子伏,要比实验测得的这种未知中性粒子的能量大得多,于是就会发现,这种未知中性粒子不可能是Υ射线。可惜旧的传统观念太深了,以致快到手的成果丢掉了。在正电子的发现过程中,同样的失误又一次发生在约里奥-居里夫妇身上,使他们成了正如恩格斯所描述的“当真理碰到鼻子尖上的时候,还是没有得到真理”的人。
纵观物理学家们的失误,造成他们作出错误分析或错失了重大科学发现的主要原因有两个:一是科学发现和创造是人类向未知领域不断探索的一个过程,而这个过程必然是复杂的、艰难曲折的,在这样的过程中出现一些失误是难免的;二是传统思想的束缚,科学发现和创造需要丰富的想象力,需要新思想、新观念,因循守旧、墨守成规就不可能作出科学发现,但突破传统观念总是非常不容易。
二、在物理教学中介绍物理学家失误的积极意义
在物理教学中,教师引导学生认识物理学家的失误,分析失误的原因,似乎会使学生产生对科学的怀疑,对科学家的不敬,在时代呼唤更多创新人才的今天,这并非不是一件好事,将有利于学生体会到人类认识自然,改造自然是个曲折艰苦的过程,是个反复修正、反复深化的过程;有利于确立不怕挫折的信念,增强学习中的毅力;有利于学生打破思维定势,活跃课堂气氛,培养创新思维能力;有利于树立学生挑战权威,服从真理的求知精神。
当然,仅仅介绍物理学家的失误,并不能达到上述目的,更要注意向学生讲述物理学家对待失误和挫折的科学态度和不屈的探索真理的精神。约里奥-居里夫妇不仅错失了发现中子的良机,后来又错失了发现正电子的机会。但他们从失败中吸取教训,始终以饱满的工作热情、坚忍不拔的意志投入研究工作,功夫不负有心人,他们终于在1934年获得了20世纪中最重要的发现之一——人工放射性,并荣获了诺贝尔物理学奖。中国科学家王淦昌教授因为自身或客观条件的限制在发现中子、验证中微子存在等物理研究方面几次和诺贝尔奖擦肩而过,但他并没有放弃对科学热诚的追求,而是进一步拓展研究领域,在众多领域里提出了自己独到的见解,直到年逾90,仍不时到研究室去,他提出的激光引发氘核出中子的想法,成为惯性约束核聚变的重要科研项目,一旦实现,这将使人类彻底解决能源问题。
在物理教学中引导学生辨别物理学家的失误和科学上的也是值得重视的一个方面,法国物理学的权威布朗洛发现N射线就是一场巨大的。对科学史上的揭示显然可以使学生正确理解物理学家的失误,而激发学生对科学家们由衷的敬佩。在实际的教学中我们似乎更应该让学生在进行相关科学探究的实践中重复物理学家的失误,比如在讲电磁感应相关内容时,笔者有意安排了这样的实验,将电流表的表面背对学生,在插入磁铁后,让学生跑到讲台后看指针的读数,学生看过常常露出不解的神情,“指针没动啊!”可磁铁确实在线圈中啊!如此,模仿了当年科拉顿所做实验的情景,并设置了相关的问题使学生明白科拉顿的失误和法拉第的成功在创新思想上的不同之处。
三、在物理教学中介绍物理学家失误的几点反思
1.介绍物理学家的失误,促进新的课程资源不断生成。
正视并合理开发日常教学中的错误资源可以丰富课程内容,激发学生的参与热情,促进新的课程资源不断生成,对师生创造性智慧的激发会起到十分重要的作用。为此,我们可以利用学生的错误激发认知冲突,促进学生思维碰撞;抓住学生因知识经验和思维方式不同而出现的错误的观点和想法,引导学生合作交流,促进生成;不轻易剥夺学生自主发现错误的机会,为教学的有效介入创造最佳时机。
2.介绍物理学家的失误,促进教师更好地锤炼教学艺术。
既然物理学家都可以有失误,对我们教师来说在教学中的失误也就没必要去遮遮掩掩。在教学中,教学双方也会因为各种情况而发生错误,错误可能来自学生,也可能来自教师。对于学生的错误,我们常常能从容应对,对于自己的失误,我们也不能回避,而是要认真反思,究其原因,寻其策略,从而提高教学设计能力和课堂教学水平。错误的价值有时并不在于错误本身,课堂教学中的错误,对学生来说是一次很好的锻炼机会,对老师来说也可以是一次机遇,在生成性的教学中教师正确处理失误是可以锤炼教学艺术,提高自身的专业水平的。
物理学家阿伯拉罕・派斯和他的物理学史著作解读与述评
摘 要:本文主要是对阿伯拉罕・派斯进行评述,探究其对于整个物理学做出的巨大贡献。与此同时,从其著作方面入手,加强关于著作方面的科学解读,希望能够充分继承这位伟大物理学家的精神,对其贡献进一步探究,从而推动整个物理学的不断发展。
关键词:阿拉伯罕・派斯 物理学史 著作 解读 评述
2000年,作为做出杰出贡献的一位伟大物理学家,同时又是一位科学史作家,阿伯拉罕・派斯不幸去世。派斯去世的原因,主要是心脏病发作,他最后的时光在哥本哈根度过,终年82岁。
派斯,1918年出生于荷兰,属于传统犹太人。派斯的中小学教育始于阿姆斯特丹。随后,凭借着自身优异的学习成绩,他非常顺利地进入大学继续学习和深造。1938年派斯顺利毕业,并获取了两个学位,一是物理学,二是数学。但派斯并没有满足于此,而是来到乌得勒支大学,进行个人学术的进一步深造,追随导师乌伦贝克。后来乌伦贝克定居美国,因此派斯的硕士毕业论文,由罗森菲尔德进行有效指导并完成。最终派斯在1940年硕士顺利毕业,取得了相应的硕士学位。然而在当时,德国已经发动世界大战,并逐渐占领荷兰。第二年,德国宣布,7月14日之后,整个荷兰的任何一所大学,严格禁止犹太人考取博士。这件事无疑影响了派斯,他努力赶写博士论文,限期真正到来之前,他最终顺利完成论文答辩。
纵观派斯的整个求学生涯,真是十分不易。然而,派斯随后将要面对的处境更加危险和艰难。当时,纳粹分子对犹太人进行压迫,这也使当地诸多物理学家,为免于遭受迫害而选择逃避,离开了培养自己的大陆。但是派斯不同,他没有离开故土荷兰。也正因为如此,战争爆发后,派斯提心吊胆,整天需要东躲西藏。访问他的当地物理学家也越来越少,除了克拉默斯,派斯较为重要的朋友。克拉默斯访问时,一般都带科学文献,两个人进行物理学知识的相关探讨。克拉默斯本来在莱顿大学承担教授职务,但后来,犹太人解雇现象较为严重,教授对德国人的残暴行为进行了抗议,德国占领大学之后,勒令当局关闭了学校。这对派斯的日常研究,即量子电动力学,造成了极大的不便。每当回首往事,派斯都感到非常不堪。荷兰当地犹太人,包括派斯的妹妹,普遍开始被抓,然后进入死亡集中营,遭到德国人残酷的杀害。而派斯自己,幸运的是能够免于这场灾难。灾难具体情况,详见其自传体著作《欧美记事》。
第二次世界大战结束之后,1946年,派斯到达哥本哈根。在那里,派斯会见了波尔,与其一家人相处融洽。与此同时,他与波尔展开了知识方面的沟通,彼此交流十分惬意。在波尔的大力推荐下,1946年秋,派斯前往美国进行访问和调查,访问的具体地点为普林斯顿,当地的一家高等研究所,但是在当时,这个研究所成立时间不长,物理学的相关研究并没有取得杰出成果。不过研究所的物理学家鉴于自身多年的经验,告诫派斯,研究过程中,如果一味闭门造车,是绝对行不通的,需要广泛涉猎。派斯听取了同行的建议,决定不再回欧洲,留下来潜心研究物理学。
派斯刚刚来到美国的时候,量子电动力学的研究取得了革命性的进展,理论物理学也得到了极大的发展。1947年,设尔特岛会议顺利召开,派斯有幸受邀参加。在这次会议上,施温格做出了科学量子力界的报告,报告非常详细。与此同时,“费曼图”这一理念得以提出。
派斯深深明白,量子电动力学领域,今后势必具有广阔的发展前景,但是这似乎已经和自己的关系不是那么密切了。尽管这方面的雄心有一定的挫败,但是派斯并没有被真正击败,而是转向宇宙线的相关领域。派斯变得更加努力,在加强探索的同时秉承更加积极的态度,针对现象进行科学合理的解释。基于此,派斯得以明确自身的方向,并着眼于基本粒子,研究工作也得到了充分的贯彻落实。
派斯经过大量研究,逐渐提出了协同产生规律等方面的内容,这在日后得到了有效证明和确立。后来,新量子数即奇异数,诞生并发展,关于这方面,派斯曾经与盖尔曼展开过合作,但是实验研究最终失败。
派斯仍然不放弃进行研究,最终提出了K介子混合理念。基于物理学本质来说,量子力学得到了充分诠释,态叠加原理也得到了完善。但是很多物理学家不禁产生了疑问,粒子混合究竟能否符合实际?然而,我们如果站在量子力学角度进行分析,透过基本粒子的本质,会发现观察量具有自带属性的特点,本身存在相应特征和形态。在态叠加原理的应用过程中,守恒电子数一旦满足这一相同条件,粒子混合就能实现。经过派斯等人的共同努力,K介子系统问题得到了充分解决。在这之后,粒子混合不断涌现。不久,科学界又提出了量子排这一概念。通过量子排方面的科学研究,粒子物理学得到了更快的发展,最终在一定程度上推动了原子物理学的发展,并对其形成一定反哺。基于此,量子力学概念得到普及和推广。量子排现象之所以提出较晚,很大一部分原因是人们不敢对其进行大胆想象。
派斯在其他领域同样做出过一定贡献,比如G宇宙领域。然而,在70年代末,派斯逐渐转向物理学史,注重加强这方面的探索和研究,朝着作家的方向发展,并在这方面进展顺利,例如爱因斯坦传记得到了广泛好评,波尔传记也同样大获成功,中文出版量相当可观。还有关于基本粒子方面的科学史巨著《基本粒子的物理学史》的中译本也问世。派斯造诣十分高深,熟知理论物理,对物理学史的叙述表现出一种深刻的洞察。除此之外,派斯语言能力超强,除了母语荷兰语外,他还熟悉地掌握了英语、法语、德语、丹麦语,这为他的科学史研究提供了极大的便利。
派斯的物理学著作,内容更加凸显真实性,如对科学界出现的错误等都进行了如实体现。特别是曾经承受的挫折、物理学走过的弯路,以及物理学家在长期探索过程中经历的迷惘、物理学家个人存在哪些不足等,他都较为直率地指出。
比方说,在爱因斯坦传中,派斯对爱因斯坦的不成熟之处以及其研究中走过的弯路、犯过的错误都进行了毫不客气的说明。再比如,书中指出,马赫原理虽然没有对物理学理论起过推动作用,但它仍然可能是未来的研究课题。
虽然派斯对波尔十分尊重和爱戴,但在波尔传记中对其并未有讳言。比方说,在量子力学领域波尔失误不少,尤其是波尔还曾否定已经被广泛认可的能量守恒定律,对此派斯在书中也如实进行了记录。除此之外,他还指出了哥本哈根阵营中泡利、狄克拉等人对波尔的不满之词。
由此可见,派斯在潜心著作的过程中,始终秉承公允的态度,并且敢于分析伟大物理学家的不足,敢于说出真话,态度十分端正,因而学术界对其十分认可和重视。派斯尤其重视书名,绞尽脑汁之后,才能拟定完成,而且一定要别出心裁。
1963年,派斯最终选择离开普林斯顿大学,来到了纽约,进入洛克菲勒大学工作,直到退休。1990年,派斯同他的第三任妻子――丹麦人类学家尼可莱森结婚,结婚之后,派斯每年往来穿梭于纽约和哥本哈根之间。2000年,派斯的《科学英才:20世纪物理学家群像》问世,这部著作是派斯从个人视角对自己所认识的物理学家进行的速写,是他的最后一部著作。
参考文献:
[1] 史明宇,陈绍军.“社会事实”与“自然物质”客观性存在的条件比较――社会学与量子力学的对话[J].理论月刊,2013(2).
[2] 刘昊淼.浅析量子力学无限方势阱――通过无限深势阱来理解量子力学非定域性[J].神州(上旬刊),2013(9).
[3] 胡化凯.20世纪50―70年代中国对哥本哈根学派量子力学诠释的批判[J].科学文化评论,2013,10(1).
[4] 张占新,莫文玲,王凤鸣等.通过计算氢原子的玻尔半径,加深对量子力学的理解[J].大学物理,2011(30).
[5] 朱安远,朱婧姝,郭华珍等.20世纪最伟大的科学巨匠――阿尔伯特・爱因斯坦(下)[J].中国市场,2013(46).
刚才写了n多 但是提交的时候发现没有登录 没保存~~ 气死我了!现在简单说说吧,量子力学和经典理论中对于测量最大的区别就是受测不准原理的影响(正规的叫法是“不确定性原理”),因为测量所用的手段,比如电子成像,光子成像都是基于这种轰击被测对象然后接收反馈的成像原理,在宏观领域这没什么错,因为电子还是光子对于被测对象的影响可以忽略不计,我们可以得到精确的结果,但是量子力学中行不通了,因为被测对象的尺度和你所用的东西是可以比拟的,你可以想想用电子轰击电子带来的误差是多大,在轰击后,你甚至无法找到被测对象了!
201 浏览 6 回答
338 浏览 7 回答
282 浏览 4 回答
92 浏览 3 回答
285 浏览 3 回答
171 浏览 4 回答
192 浏览 3 回答
120 浏览 3 回答
82 浏览 3 回答
236 浏览 5 回答
347 浏览 2 回答
262 浏览 4 回答
123 浏览 4 回答
333 浏览 5 回答
293 浏览 5 回答