物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.
1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.
2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].
2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.
3结语
论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.
参考文献:
〔1〕祝之光.物理学[M].北京:高等教育出版社,.
〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.
〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.
〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)
〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.
〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.
〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.
〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.
一、全息教学在初中物理教学中运用的策略
1.运用全息理论,对初中物理教学课型进行合理选择与搭配
新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立?”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声?多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误?针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。
2.运用全息理论,根据物理教材和学情选择合适的教学方法
在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3.运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。
二、结束语
量子密码与传统的密码系统不同,它依赖于物理学作为安全模式的关键方面而不是数学。下面是我精心推荐的一些量子通信技术论文,希望你能有所感触!
基于科学史视角的量子密码
摘 要: 为了寻求一种无条件安全的密钥系统,采用了科学史的研究方法,对人类历史上产生过巨大影响的密钥思想进行了探究,调研了现在广泛使用的密码系统,特别是RSA密码系统,并指出它的安全性受到量子计算能力的严重挑战,在此基础上探究一次一密与量子密钥分发的结合能否实现无条件安全通信。
关键词: RSA密码系统; 量子密码 ; 一次一密; 量子密钥分发
中图分类号: TN918?34 文献标识码: A 文章编号: 1004?373X(2013)21?0083?03
0 引 言
保密通信在人类社会中有着重要的地位,关系到国家的军事、国防、外交等领域,同时也与人们的日常生活息息相关,如银行帐户存取、网络邮箱管理等。保密通信关键在于密码协议,简称“密钥”。密钥的安全性关系到通信的保密性。密码学的发展也正是在加密者高明的加密方案和解密者诡异的解密技术的相互博弈中发展前行的,两者互为劲敌,但又互相促进。随着量子计算机理论的发展,传统的安全通信系统从原理上讲已不再安全。那么,是否存在一种无条件安全的通信呢?量子密码又将给信息的安全传输带来怎样的新思路呢?本文从科学史的角度分析人类传统的密码方案,考察量子密码发展的来龙去脉,为科学家提供关于量子密码的宏观视角,以便更好地推进关于量子密码的各项科学研究。
1 人类历史上影响巨大的密钥思想
密码学有着古老历史,在近代逐渐发展成为一门系统的应用科学。密码是一个涉及互相不信任的两方或多方的通信或计算问题。在密码学中,要传送的以通用语言明确表达的文字内容称为明文,由明文经变换而形成的用于密码通信的那一串符号称为密文,把明文按约定的变换规则变换为密文的过程称为加密,收信者用约定的变换规则把密文恢复为明文的过程称为解密。敌方主要围绕所截获密文进行分析以找出密码变换规则的过程,称为破译。密码协议大致可以分为两类:私钥密码系统(Private Key Cryptosystem)和公钥密码系统(Public Key Cryposystem)。
我国古代的一种典型密钥——阴符
阴符是一种秘密的兵符,在战争中起到了非常重要的作用。据《六韬·龙韬·阴符》记载,阴符是利用不同的长度来代表不同的信息,一共分为八种。如一尺的兵符代表“我军大获全胜、全歼敌军”;五寸的兵符代表“请求补给粮草、增加兵力”;三寸的兵符代表“战斗失利,士卒伤亡”。
从现在的密码学观点来看,这是一种“私钥”,私钥密码系统的工作原理简言之就是:通信双方享有同一个他人不知道的私钥,加密和解密的具体方式依赖于他们共同享有的密钥。这八种阴符,由君主和将帅秘密掌握,是一种用来暗中传递消息,而不泄露朝廷和战场机密的通信手段。即便是阴符被敌军截去,也无法识破它的奥秘。由于分配密钥的过程有可能被窃听,它的保密性是由军令来保证的。
古斯巴达人使用的“天书”
古斯巴达人使用的“sc仔tale”密码,译为“天书”。天书的保密性在于只有把密文缠绕在一定直径的圆柱体上才能呈现明文所要表达的意思,否则就是一堆乱码。不得不感叹古代人的智慧。图1为“天书”的示意图,它也是一种“私钥”,信息的发送方在发布信息时将细长的纸条缠绕在某一直径的圆柱体上书写,写好后从圆柱体上拿下来便是密文。但是,它的保密性也非常的有限,只要找到对应直径的圆柱体便很容易破译原文。
著名的“凯撒密表”
凯撒密表是早在公元前1世纪由凯撒大帝(Caesar)亲自设计用于传递军事文件的秘密通信工具,当凯撒密码被用于高卢战争时,起到了非常重要的作用。图2为“凯撒密表”。从现代密码学的角度看,它的密钥思想非常简单,加密时,每个字母用其后的第[n]个字母表示,解密的过程只需把密文字母前移[n]位即可。破译者最多只要尝试26次便可破译原文。
德国密码机——“恩尼格玛”
二战期间德国用来传递军事机密的“ENIGMA”密码机,它的思想基本类似于“凯撒密表”,但比“凯撒密表”复杂很多倍,它的结构主要分为三部分:键盘、密钥轮和显示灯盘。键盘可以用于输入明文,显示灯盘用于输出密文,密钥轮是其核心部分,通常由3个橡胶或胶木制成的直径为6 cm的转子构成,密钥轮可以任意转动进行编制密码,能够编制出各种各样保密性相当强的密码。它的神奇之处在于它不是一种简单的字母替换,同一个字母在明文的不同位置时,可以被不同的字母替换。而密文中不同位置的同一个字母,可以代表明文中不同的字母。所以它的安全性较高,但也并非万无一失,由于德国人太迷恋自己的“ENIGMA”密码机,久久不愿更换密钥,所以免不了被破译的结局。
2 目前人类广泛使用的密钥及其存在的问题
现代广泛使用的密码系统——RSA密码系统受到前所未有的挑战
现代广泛被用于电子银行、网络等民用事业的RSA密码系统是一种非对称密钥。早在20世纪60年代末70年代初,英国情报机构(GCHQ)的研究人员早已研制成功。相隔十年左右,Ronald Rivest、Adi Shamir和Leonard Adleman才研制出类似的密码系统,并以三个人的名字命名为“RSA”。它是一种公钥密码系统,工作原理如下:假设通信双方分别为Bob和Alice。Bob公布一个公钥,Alice用这个公钥加密消息传递给 Bob,然而,第三方不可能用Bob的公钥解密。原因在于加密变换巧妙,逆向解密困难。而Bob有与公钥配对的私钥。
RSA公钥密码系统巧妙地运用了分解因数和解离散对数这类难题,它的安全性依赖于计算的复杂性。虽然原理上可以计算出,但是计算出来也需要几万年的时间。然而,随着量子计算机理论的成熟,RSA密码体受到严重挑战,随着计算时间的缩短,RSA密码系统的安全性令人堪忧,RSA密码系统有可能随着量子时代的到来被人类完全抛弃。 “一次一密”的最大的问题是密钥分配
RSA密码系统受到严重挑战后,一次一密(One time Padding)的不可破译性又被人们所记起。一次一密指在密码当中使用与消息长度等长的随机密钥, 密钥本身只使用一次。原理如下:首先选择一个随机位串作为密钥,然后将明文转变成一个位串,比如使用明文的ASCII表示法。最后,逐位计算这两个位串的异或值,结果得到的密文不可能被破解,因为即使有了足够数量的密文样本,每个字符的出现概率都是相等的,每任意个字母组合出现的概率也是相等的。香农在1949年证明一次一密具有完善的保密性[1]。然而,一次一密需要很长的密码本,并且需要经常更换,它的漏洞在于密钥在传递和分发上存在很大困难。科学家试图使用公钥交换算法如RSA[2],DES[3]等方式进行密钥交换, 但都使得一次一密的安全性降低。因此,经典保密通信系统最大的问题是密钥分配。
3 量子密码结合“一次一密”实现无条件保密
通信
量子密码学是量子力学和密码学结合的产物,简言之,就是利用信息载体的量子特性,以量子态作为符号描述的密码。
运用科学史的视角探究量子密码的发展过程
量子密码概念是由Stephen Wiesner在20世纪60年代后期首次提出的[4]。
第一个量子密码术方案的提出是在1984年,Charles Bennett, Gills Brassard提出一种无窃听的保密协议,即,BB84方案[5],时隔5年后有了实验原型[6]。随后,各类量子密码术相继出现,如简单效率减半方案——B92方案[7] 。
1994年后,RSA密码系统面临前所未有的威胁,因为,经典保密通信依赖于计算的复杂性,然而,Peter Shor 提出寻找整数的质因子问题和所谓离散对数的问题可以用量子计算机有效解决[8]。1995年,Lov Gover 证明在没有结构的搜索空间上搜索问题在量子计算机上可以被加速,论证了量子计算机的强大的能力[9]。Peter Shor和 Lov Gover量子算法的提出,一方面证明了量子计算的惊人能力,另一方面,由于经典密码系统受到严重威胁,促使各国将研究重点转向量子密码学。
量子密码解决“一次一密”的密钥分配难题
一次一密具有完善的保密性,只是密钥分配是个难题。
量子密钥在传输过程中,如果有窃听者存在,他必然要复制或测量量子态。然而,测不准原理和量子不可克隆定理指出,一个未知的量子态不能被完全拷贝,由某一个确定的算符去测量量子系统,可能会导致不完备的测量,从而得不到量子态的全部信息。另外,测量塌缩理论指出测量必然导致态的改变,从而被发现,通信双方可以放弃原来的密钥,重新建立密钥,实现绝对无窃听保密通信。量子密码的安全性不是靠计算的复杂性来保障,而是源于它的物理特性。
这样就保证了密钥可以被安全分发,窃听行为可以被检测。因此,使用量子密钥分配分发的安全密钥,结合“一次一密”的加密方法,可以实现绝对安全的保密通信。
4 结 语
与经典密码系统相比较,量子密码不会受到计算速度提高的威胁,并且可以检测到窃听者的存在,在提出近30年的时间里,逐渐从理论转化为实验,有望为下一代保密通信提供保障,实现无条件安全的保密通信。
参考文献
[1] SHANNON C E. Communication theory of secrecy systems [J]. Bell System Technical Journal, 1949, 28(4): 656?715,
[2] 张蓓,孙世良.基于RSA的一次一密加密技术[J].计算机安全,2009(3):53?55.
[3] 王伟,郭锡泉.一次一密DES算法的设计[J].计算机安全,2006(5):17?18.
[4] WIESNER S. Unpublished manuscript circa 1969: conjugate coding [J]. ACM Sigact New, 1983, 15: 77?79.
[5] BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing [C]// Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: IEEE, 1984: 175?179.
[6] BENNETT C H. BRASSARD G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working [J]. ACM Sigact News , 1989, 20: 78?80.
[7] BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography [J]. Journal of Cryptology, 1992(5): 3?21.
[8] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring [C]// Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, 1994: 124?133.
[9] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys Rev Letters, 1997, 79(2): 325?328.
点击下页还有更多>>>量子通信技术论文
136 浏览 4 回答
221 浏览 5 回答
156 浏览 3 回答
161 浏览 2 回答
254 浏览 4 回答
309 浏览 4 回答
106 浏览 4 回答
133 浏览 3 回答
261 浏览 2 回答
218 浏览 2 回答
82 浏览 4 回答
235 浏览 3 回答
151 浏览 2 回答
286 浏览 2 回答
90 浏览 2 回答