线性拟合一般采用的方法是基于最小二乘法拟合函数、基于pyplot拟合函数、基于神经网络拟合函数。
线性拟合是曲线拟合的一种形式。设x和y都是被观测的量,且y是x的函数:y=f(x;b),曲线拟合就是通过x,y的观测值来寻求参数b的最佳估计值,及寻求最佳的理论曲线y=f(x;b)。当函数y=f(x;b)为关于b的i线性函数时,称这种曲线拟合为线性拟合。
曲线拟合要解决的问题是寻求与的背景规律相适应解析表达式;使它在某种意义下最佳的逼近或拟合称为拟合模型;为待定参数,当仅在中线性的出现时,称模型为线性的,否则为非线性的。
模型的选择:
对于给定的离散数据需恰当地选取一般模型中函数的类别和具体形式,这是拟合效果的基础。若已知的实际背景规律,即因变量对自变量的依赖关系已有表达式形式确定的经验公式,则直接取相应的经验公式为拟合模型。反之,可通过对模型中基函数的不同选取,分别进行相应的拟合并择其效果佳者。
函数对模型的适应性起着测试的作用,故又称为测试函数。另一种途径是:在模型中纳入个数和种类足够多的测试函数,借助于数理统计方法中的相关性分析和显著性检验,对所包含的测试函数逐个或依次进行筛选以建立较适合的模型(见回归分析)。