常见光致变色是指物体的颜色随光照的增强而变暗,光消除后颜色恢复变浅的现象。一般情况下,光致变色现象都有时间延迟,当一个光致变色颜色物体受光后,其颜色变暗需要一定时间达到稳定;同样当一个受光变暗的物体颜色在撤光后会逐步恢复。光致变色的颜色延迟时间视具体变色材料而定,其范围一般在千分之几秒到几分钟之间。现代生活中,光致变色现象十分常见,例如广泛使用的光致变色玻璃,其常用应于变色眼镜和汽车的变色玻璃等。变色眼镜的光透射率随光的增强而降低,变色玻璃的颜色随光的增强而变暗,从而避免眼睛受强光的刺激。
钻石中也存在光致变色效应,即罕见的“变色龙”(Cham eleon)现象。“变色龙”钻石在可见光下呈绿色,长时间放置暗处后刚取出时呈黄色。产生钻石“变色龙”现象的原因是具有一个中心在800nm的光致宽吸收带,该吸收带向可见光范围扩展到大约550nm,吸收长波可见光。“变色龙”钻石从黑暗处取出后,在可见光激发下“变色龙”钻石的光致宽吸收带在几分钟内逐步形成。宽吸收带吸收长波可见光,N3色心吸收短波可见光,因此,钻石在光照下呈绿色。当“变色龙”钻石放置在黑暗处很长时间后,由于没有可见光激发,宽吸收带逐步消失,所以刚从黑暗处取出时只有N3色心吸收短波可见光而呈现黄色。
图2-19所示为具光致变色效应的钻石光谱透射率曲线。钻石在可见光照射下产生800nm的光致宽吸收带,其可延伸到可见光长波范围吸收长波可见光,N3色心吸收短波可见光,形成如实线所示的光谱透射曲线。由于在可见光照射下光致变色效应钻石的主波长(Dominant Wavelength,DW)位于绿色波长范围,所以钻石呈现绿色;当800nm的光致宽吸收带没有形成时,只有N3色心存在,钻石呈现黄色,其光谱透射率曲线与典型的Ⅰa型黄色钻石的N3色心光谱透射率曲线一样,如图中的虚线所示。
图2-19 光致变色效应钻石的光谱透射率曲线
实线为光照下的光谱透射率曲线,虚线为无光照时的光谱透射率曲线
中心在800nm的光致宽吸收带的热稳定性很差,在适当的高温下,钻石晶体的原子热振动加剧,光致宽吸收带足以被破坏随之消失。当“变色龙”钻石加热到200~300℃时,颜色为黄色,主要是由热稳定性极高的N3色心所产生。“变色龙”钻石加热后变色的原因与一般热敏变色的机理不尽相同。实际上所有材料的光致变色效应在高温下都会减弱或消失。
中心位于800nm的光致宽吸收带的具体成因不详。据研究报导,光致变色效应钻石都含有氢,因而光致宽吸收带被推断可能与氢在钻石晶格中的作用有关,是一个常温下由可见光激发的宽吸收带。
目前已知产生光致变色效应的原理有两个:一是化合物在光作用下分解;二是在光作用下两种化合物之间发生电子转移。光致变色玻璃中的卤化银盐在光照射下分解,使颜色变暗。由于卤化银盐被封闭在玻璃中,撤光后卤化银盐重新化合,使颜色变浅。在变色眼镜中同时添加银盐和铜盐,在光照下铜盐向银盐转移一个电子,使颜色变暗。撤光后铜盐和银盐恢复原态,使玻璃也恢复透明。
在钻石晶体中不可能存在氢的化合物,光照下在钻石内发生氢化物分解的可能性几乎为零。唯一可能由氢引起钻石光致变色效应的原因是发生氢与其他元素发生的电子转移,但氢原子只有一个电子,发生电子转移的可能性也不大,由氢引起钻石光致变色效应的推论值得商榷。
在光致变色效应钻石晶体中应存在两种形式的分子或特殊的晶体结构,它们的电子在光子的激发下可以发生电子转移,从而产生中心位于在800nm的光致宽吸收带。钻石的光致变色效应的真正成因有待进一步深入研究。晶体中的电子转移一般发生在金属元素之间。据目前为止的研究,光致变色效应钻石中不存在金属元素,不可能发生金属元素之间的电子转移,或金属元素与其他元素之间的电子转移。钻石光致变色效应是否由色心之间或色心与其他元素或原子团之间的电子转移造成的,值得研究探索,也可能是由一个全新未知机理所造成的。变色龙钻石均属于Ⅰa型,800nm 光致宽吸收带未在其他类型的钻石中发现,因此,可以假设,800nm 光致宽吸收带与氮的聚合体有关。