数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。
同样方法演示全是5元的,再拿二元去替换也可以。
3.抽象算法(形成策略):
(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。
三、类化巩固(自主练习)。
①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”
先由学生小组讨论,在抽生上台展示算法:
假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。
同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。
②自己出题,交换答案.
展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?
展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)
四、归纳提高:
解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).
五、知识拓展。
其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。
“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”
六、 解决生活问题(达标测试):
1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。
②小明买了6角和8角的邮票共花5元,分别买了多少张?
2.选作题:
①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?
②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?
反思
《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。
在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。
在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。
本堂课我力求做到了三动:身动、心动、神动.
随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。
在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。
“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。
一、 《孙子算经》中的“雉兔同笼”
“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)
其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:
第一步:上置三十五头,下置九十四足
我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)
古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。
如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。
第二步:半其足得四十七
意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。
图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。
第三步:上三除下三,上五除下五
这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)
用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)
第四步:下有一除上一,下有二除上二即得
与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)
以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。
二、 《算法统宗》中的“鸡兔同笼”
“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)
其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:
第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。
第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。
第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。
第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。
第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。
第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。
另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。
《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:
(94-35×2)÷2=12(只)
第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:
(35×4-94)÷2=23(只)
这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。
《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”
【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。
【关键词】鸡兔同笼;解题思路;求解方法;数学思想
鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡
方程:
解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23
答:兔有12只,鸡有23只。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解
对于这个问题,我们给出如下几种求解方法,并给出相应的公式;
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数
解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数
解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数
解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数
“鸡兔同笼”中的数学思想方法
一、化归思想
化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。
二、假设思想
假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。
用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。
三、方程思想
方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。
四、建模思想
弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。
以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。
参考文献:
把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=〈@①,3/10=〉@②;可能是8吗?不可能。 因为1/ 8=〉@①,3/8=〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=……=@①;3/9=1/3=1÷3=……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=…… @④=6/9=2/3 验证:2/3=2÷3=…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=〈@⑤,13/100=〈@⑥。可能是98吗?不可能。 因为12/98≈〉@⑤,13/98≈〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=……=@⑤; 13/99=13÷99=……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=…… @⑧=18/99=2/11,验算:2/11=2÷11=…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
数学广角搭配评课是一种评价教学效果的有效方法,它将教学内容、教学方法、教学环境、学生学习状态等多方面的因素综合考虑,以客观、科学的方法评价教学效果。优点:1、能够全面评价教学效果,把教学内容、教学方法、教学环境、学生学习状态等多方面的因素综合考虑,从而更好地评价教学效果。2、能够更加客观地评价教学效果,从而更好地指导教学改进。3、能够更好地掌握学生的学习情况,从而更有针对性地指导学生的学习。缺点:1、评价过程较为复杂,需要耗费大量的时间和精力。2、评价结果容易受到主观因素的影响,从而影响评价的准确性。3、评价结果可能会受到学生的个人能力和学习状态的影响,从而影响评价的准确性。
如果你写的出来那是直接送去留学的的了......啊!什么?!你五五五五五五年级?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
小学数学下册《数学广角推理》的优秀教学反思范文(通用6篇)
身为一名到岗不久的老师,我们都希望有一流的课堂教学能力,写教学反思可以快速提升我们的教学能力,优秀的教学反思都具备一些什么特点呢?下面是我精心整理的小学数学下册《数学广角推理》的优秀教学反思范文,希望对大家有所帮助。
二年级的孩子年龄比较小,比较喜欢实践类的知识,所以对这节课具有具有较高的学习热情。在开始时通过猜书游戏引入新课时,他们的学习积极性比较高,从最简单的随意猜测到简单推理,很快参与到学习活动中来,能初步理解推理的含义,大多数同学都能运用连线、填空或者连线的方法进行简单推理。在课堂练习环节设计上,习题练习层次分明,既巩固了新知又拓展学生的思维,让不同层次的学生都得到发展,这一点是不错的。
这次我在备课时不仅仅要考虑这节课的流程设计,体会更多的是教师语言的细致严谨,具有明确的指向性并起着足够的引导作用。比如我在教学探究“含有两个条件的推理”时,就一句提问方式的转变,更有果效的引导学生从两种思维去得到两种结论,有效发展了学生的思维水平。出示:他们分别拿着语文书和数学书,小红说:“我拿的不是数学书”。师:从这个线索中你得到了哪些信息?通过让学生自己去探究所得信息,然后在班内通过回答问题进行交流,教师再作适当的总结,这样就不会限制学生的思维,从而又能得到有效的结论。
整节课大部分学生学生积极参与,学生学的有趣又有效。教学过程层层紧接,环环相扣。练习的设计由浅入深,学生学得很轻松、很愉快。
当然,这节课也有不足之处,班内有一个同学的积极性不是很高,我利用课余时间向他了解了情况,也向他提出要求:课堂上应该认真听讲,不懂就问。并且利用下午口算完成的空闲时间对他进行了辅导,效果不错。在今后的教育教学中,我还要继续关注每一个学生,不放弃任何一个学生!
《数学广角—推理》是二年级下册“数学广角”中的内容,也是新教材新增的内容之一,通过这一内容的学习来培养学生的逻辑推理能力,培养学生有顺序地、全面思考问题的意识。
整节课主要以学生为主,小组活动内容多样,让学生在活动中充分感受推理的过程,从初步感知到操作理解,层层深入,学生和教师较好的融为一体,收到了较好的教学效果。本节课中我把重要的数学思想方法通过日常生活中最简单的事例呈现出来,并组织学生展开小组合作的学习方式来解决这些问题。
本节课教学着眼于学生的发展,凸显数学学习的生活化;注重发挥多媒体教学的作用,通过课件演示、游戏活动等方式组织教学,引导学生观察比较。同时,还注意研究学生获取知识的思维过程,体现教师的引导下学生的主动探究过程。老师在改变学生学习方式方面做了些尝试,努力改变以前过于强调接受学习、机械训练的学习方式,实施新课程倡导的建立具有“主动参与,乐于探究,积极交往”等特征的新的学习方式,收到较好的学习效果。
本节课主要是通过活动让学生感受简单地推理过程,要求孩子们能根据提供的信息提出问题,并进行判断、推理,得出结论,使学生初步接触和运用排除法。教材通过一些简单生动有趣的简单事例,运用猜测等直观手段解决这些问题,体会数学思想方法在生活中的用途,初步培养学生的提问题和全面思考问题的意识,激发学生学好数学的信心。
二年级的孩子由于他们的年龄特点,他们具有较高的学习热情,尤其是让他们参与活动,他们的积极性都会很高。在开始时通过猜两位同学分别拿的什么书时,挖掘学生熟悉的生活素材,从最简单的随意猜测到简单推理,既活跃课堂气氛,又能使学生尽快进入角色,参与到学习活动中来。最后的练习设计,充分调动学生的练习兴趣,练习层次分明有坡度,既巩固了新知识又拓展学生的思维。当然,本课中也有很多不足的地方,值得我去反思:
1.课堂语言不够简洁。教学的课堂应体现简洁性。本节课太注重时间的掌握,以致于老师的话有点多,对学生发言较少时,没能及时进行调整,应该多提问一些学生,包括各个层次的。
2.对学生的课堂鼓励性语言还不够丰富,对学生积极性的调动的能力有待进一步的提高。
《数学广角》是义务教育课程标准实验教科书数学(人教版)二年级下册的教学内容。为了调动起学生学习的积极性,让学生在轻松愉快的气氛中学习,我设计了猜两本书,猜三本书,猜图形,课间活动等一系列的活动,活动中把推理思想方法渗透给学生,让学生在不知不觉中去感知如何推理。本课时里设想了以下几点:
一、创设故事情境,激发学生探究的兴趣。
整节课始终用创设的故事情境来吸引学生主动参与激发积极性。首先由猜两张卡片上的人物这个情境引入,再引导学生过渡到猜三本书。其次为了巩固这节课的重点,又创设了两个问题:猜小狗的名字和猜图形。
二、关注学生的生活经验和知识背景。
数学来源于生活又用于生活,数学教学应该是从学生的生活经验和已有知识背景出发,向学生提供充分的从事数学活动和交流的机会。“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选择合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。
三、让学生在丰富多彩的教学活动中领悟新知。
本节课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。本堂课做到了面向全体,学生的主体地位比较突出,学生参与的面比较广,很好地调动了学生的积极性,激发了学生的兴趣。
我在执教过程中发现了以下几点不足和感到困惑的地方:
学生的语言表述不够,在猜书本环节学生自己独立思考分析了后没有充分地用言语来表述自己的推理过程,导致时间把握不准确。在推理过程的三种记录法进行解读时没有把三种方法之间的联系以及共同点解读充分。巩固练习环节的几个练习层次性不强,没有提升练习,所以学生思考起来也比较快,还没有到下课时间我就做了全课总结,让我感到很尴尬。
1.通过我对教材的认真学习和虚心请教,本节课我将教学目标与教学重难点做了如下安排:
(1)通过“猜一猜”的游戏活动,让学生经历简单推理的过程,初步获得一些简单推理的经验。
(2)让学生在有趣的游戏中感受推理的趣味性,培养学生初步的分析推理能力。
(3)使学生感受到生活、活动中有“数学”,激发学生热爱数学的浓厚兴趣,逐步养成勤于思考的良好习惯。
而教学教学重难点则是使学生能清晰地、有条理的表达推理过程。
2、设身处地,分析学情
教师如果只关注自己如何教,不关注学生如何学那是不可能上好一节课的。因此在学习分析完教材内容后,关注学生的'学就因从现在开始。
本节课所面对的是刚刚又一年级升入二年级的学生,他们争强好胜,求知欲高,但这帮学生自制力差,注意力集中时间短。要想整节课都能让孩子跟着教学节奏,兴趣盎然参与学习活动。只有从学生的心理出发,心情愉快是学生顺利认知的心理基础,而愉快的心理因素往往是由情境引发的,如愉快的数学游戏、动态的教学图片、生动的数学故事、欢乐的数学比赛、形象的电教演示等。为学生创造两好的学习精神环境。
3、抓住本质,定教法、学法
李老师常和我们新老师说:“教是为了不需要教,学是因为需要学”。道理等同于“授之以鱼,不如授之以渔”。做为现代的教育工作者思考更多不应再是怎样教会学生知识,而是怎样教会学生学习知识的方法。因此,上课的教师除了对教材、学生清醒的认识、分析外。如何选用合适的教法、学法,这个问题也是需要反复度量的。
本节课学生需要经历一个直观猜想、有序思考、简单推理、验证结果的过程,因此这节课主要采用的教法是情境法、实验法。学法则主要采用的合作交流的方式进行。
4、实践建构,精啄语言
《简单的推理》一课是李老师实践过不下5次的课,因此在教学准备这一块我的资料是很齐全的,整节课以学生喜爱的卡通人物“贝贝、乐乐、欢欢”三个小伙伴之间发生的事情为主线,创设了“猜兄弟关系”、“猜花”、“猜球”、“猜数”、“脑筋急转弯”等一系列含有数学问题联起来的情景。以实现从书本情景到实际生活情景的过度,满足学生的学习需要,激发学生的求知欲望,强化学生的知识体验过程的目的。
在这样的结构安排下,我每次试教磨课后形成的教案,一次又一次的被推翻,主要问题出在这是一节逻辑推理课,学生的说在整节课占了相当大比重。如何引导学生严谨有序的说清推理的过程,教师的语言准确性、条理性、逻辑性要求甚高,并且本节课让学生体会推理三种物体只要把已经知道的先确定,其实和推理两种物体的方法完全一样。这一难点,我在教学例2时,前面3次的试教都没能突破,艾校从充分理由律谈到与本节课的联系,从结构谈到操作,从学习目标谈到教学目标,在这样的微格评课,我才有所领会,《简单的推理》就是让学生在具体情境中,经历从可能性到确定性的过程,有条理的根据条件进行思考作出判断,并对自己得到结论的合理性做出解释的过程。
二年级简单的推理是学生以后学习数学推理、分析问题的基础,因此,这个内容显得很重要,既是对学生已有知识的进一步提升,又是为今后的学习打下好的基础做准备。这节课有优点,也有不足的地方,使我产生以下几点想法。
好的方面:
1、采用游戏引入,激发学生的学习兴趣,适合学生的年龄要求。
2、教学设计采取层层推进,由两个事物,知其一个推出另一个的,到三个事物的推理,在教学中善于制造矛盾,让学生产生知识的冲突,继而引导学生进行推理。
3、练习设计的比较好,练习具有趣味性和挑战性,始终让学生保持好的精神状态。
4、板书设计好,设计简单明了。
不足的地方:
1、激励的手段还不够多样。
2、引导学生说得不够清晰。
3、对问题的预设准备不充分
课还有许多地方要改进,但这是一节成功的课,只要不断改进,课会上得更出色。
256 浏览 4 回答
216 浏览 4 回答
189 浏览 6 回答
340 浏览 3 回答
88 浏览 5 回答
303 浏览 3 回答
324 浏览 3 回答
333 浏览 4 回答
316 浏览 3 回答
276 浏览 3 回答
198 浏览 3 回答
269 浏览 6 回答
95 浏览 2 回答
226 浏览 7 回答
142 浏览 4 回答