数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
我给你找了一篇,摘要如下:随着Internet在全世界范围内迅猛发展,网上庞大的数字化信息和人们获取信息之间的矛盾日益突出。因此,对网络信息的检索技术及其发展趋势进行探讨和研究,是一个既迫切而又实用的课题。本文通过对网络信息检索的基本原理、网络信息检索的技术及工具、网络信息检索的现状等方面进行分析研究,并对网络信息检索的发展趋势进行了预测,旨在寻找提高网络信息检索的手段和方法的有效途径,并最终提高网络信息的检索效果,使得网络信息资源得到充分有效地利用。 全文主要包括六个部分,第一部分为网络信息检索述评,主要是阐述了网络信息检索所涉及到的有关概念,如信息检索技术、网络信息检索的特点及网络信息检索效果评价。第二部分重点讨论了网络信息检索的基本技术。如信息推拉技术、数据挖掘技术、信息过滤技术、自然语言处理技术等等,旨在弄清网络信息检索的技术支撑,为预测网络信息检索的发展趋势作下铺垫。第三部分对网络信息检索的重要工具——搜索引擎进行了阐述,主要从其检索机制入手,分析了不同种类的搜索引擎的检索特点及功能。其独到之处在于对搜索引擎的基本功能进行了比较全面的概括,并对目前流行的搜索引擎进行科学的分类...第四部分分析讨论了检索技术的另一分支—基于内容的检索技术第五部分则分析了网络信息搜索工具的局限,主要从文本信息检索和多媒体信息检索两方面进行阐述。好不容易给转成 .txt文本,贴在下面:网络信息资源网络信息资源是指“通过国际Intemet可以利用的各种信息资源”的总称。随着Intemet的迅速发展,网上信息资源也以指数形式增加,网络信息资源作为一种新型的信息资源,发挥着越来越重要的作用,其内容几乎无所不包,涉及政治、经济、文化、科学、娱乐等各个方面;其媒体形式多种多样,包括文本、图形、图像、声音、视频等;其范围覆盖社会科学、自然科学、人文科学和工程技术等各个领域。信息检索技术信息检索技术是现代信息社会中非常关键的技术之一。信息检索是指将信息按一定的方式组织和存储起来,并根据信息用户的信息需求查找所需信息的过程和技术,所以信息检索的全称又叫“信息存储与检索”。狭义的信息检索仅指从信息集合中找出所需信息的过程,也就是利用信息系统检索工具查找所需信息的过程。人们获取信息源的方式主要有:①遵循传统的检索方法在浩如烟海的图书馆资料中,通过人工查找索引找到对应的文献索引号再获取文献原文;②联机信息检索。这其中也存在一个发展过程,由检索结果来看,从提供目录、文摘等相关的二次信息检索到可以直接获得电子版的全文;由检索方法来看,从对特定关键词或者如作者、机构等辅助信息作为检索入口的常规检索到以原始文献中任意词检索的全文检索等等。其中,全文检索由于其包含信息的原始性、信息检索的彻底性、所用检索语言的自然性等特点在近年来发展比较迅速,成为深受人们关注的一种非常有效的信息检索技术,它是从大容量文档库中精确定位所需信息的最有效手段l3]。.信息检索其检索方式有:浏览器方式和搜索引擎方式。(l)浏览器方式(Br,singsystelns)。只要能够进入hitemct就能够通过浏览器,利用HTTP协议提供的WV乃万服务,浏览认触b页面和通过W匕b页面提供的检索方式访问数据库。(2)搜索引擎方式(SearehEngines)。搜索引擎是intemet提供公共信息检索服务的W七b站点,它是以一定的技术和策略在intemet中搜集和发现网络信息,并对网络信息进行理解、提取和处理,建立数据库,同时以认倪b形式提供一个检索界面,供用户输入检索关键词、词组或短语等检索项,代替用户在数据库中查找出与提问相匹配的记录,同时返回结果且按相关度排序输出,从而起到快速查找信息的目的。搜索引擎所处理的信息资源主要包括万维网服务器上的信息,另外还包括电子邮件和新闻组信息。搜索引擎服务的宗旨是为满足用户的信息需要,所以它是面向用户的,采用的方式是交互式的。网络信息检索工具采用主动提交或自动搜索两种方法搜索数据。网络信息检索效果评价目前,得到普遍认同的检索效果的评价标准主要有以下几个:查全率、查准率、收录范围、输出格式,其中以查全率和查准率最为重要。现代信息科学技术的发展,为人们提供了多种多样的信息获取和传送方法及技术,从“信源”与“用户”的关系来看,可分为两种模式:“信息推送”模式(InformationPush),由“信源”主动将信息推送给“用户”,如电台广播;“信息拉取”模式(InformationPull),由“用户”主动从“信源”中拉取信息,如查询数据库。信息推送技术“推”模式网络信息服务,是基于网络环境下的一种新的服务形式,即信息服务者在网上利用“Push”技术为特定用户开展信息服务的方式。Push技术之所以成为Intemet上一项新兴的技术,是因为借助该技术使网络信息服务具有主动性,不仅可以直接把用户感兴趣的信息推送给用户,而且可有效地利用网络资源,提高网络吞吐率;再者,Push技术还允许用户与提供信息的服务器之间透明地进行通信,极大地方便了用户。所谓Push技术,又称“推送”技术、Web广播(Webeasting)技术,实质上是一种软件,这种软件可以根据用户定义的准则,自动搜集用户最可能发生兴趣的信息,然后在适当的时候,将其传递至用户指定的“地点”。因而从技术上看,“推”模式网络信息服务就是具有一定智能性的、可以自动提供信息服务的一组计算机软件,该软件不仅能够了解、发现用户的兴趣(可能关心的某些主题的信息),还能够主动从网上搜寻信息,并经过筛选、分类、排序,然后按照每个用户的特定要求,主动推送给用户141。(l)信息推送方式。信息推送方式分两类,即网播方式和智能方式。网播方式有:频道式推送。频道式网播技术是目前普遍采用的一种模式,它将某些页面定义为浏览器中的频道,用户可像选择电视频道那样接受有兴趣的网播信息;邮件式推送,用电子邮件方式主动将所推送信息发布给各用户,如国际会议的通知、产品的广告等:网页式推送。在一个特定网页内将所推送信息发布给各用户,如某企业、某组织、某个人的网页;专用式推送。采用专门的信息发送和接收软件,信源将信息推送给专门用户,如机密的点对点通信。智能推送方式有:操作式推送(客户推送式),由客户数据操作启动信息推送。当某客户对数据进行操作时,把修改后的新数据存入数据库后,即启动信息推送过程,将新数据推送给其他客户;触发式推送(服务器推送式),由ll硕士学位论文MASTER,5THESIS⑧数据库中的触发器启动信息推送过程,将新数据推送给其他客户,当数据发生变化,如出现增加(Insert)、删除(Delete)、修改(update)操作时,触发器启动信息推送过程。(2)信息推送的特征。信息推送的特征有:主动性、针对性、智能性、高效性·灵活性和综合性I5]。主动性。Push技术的核心就是服务方不需要客户方的及时请求而主动地将数据传送到客户方。因而,主动性是“推”模式网络信息服务最基本特征之一。这也是它与基于浏览器的“拉”(Pull)模式的被动服务的鲜明对比。针对性(个性化)。针对性是说,Push技术可以针对用户的特定信息需求进行检索、加工和推送,并根据用户的特定信息需求为其提供个人定制的检索界面。智能性。Push服务器能够根据用户的要求自动搜集用户感兴趣的信息并定期推送给用户。甚至,Push技术中的“客户代理(ClientAgent)”可以定期自动对预定站点进行搜索,收集更新信息送回用户。同时个人信息服务代理和主题搜索代理还可为了提高“推送”的准确性,控制搜索的深度,过滤掉不必要的信息,将认飞b站点的资源列表及其更新状态配以客户代理完成。因而,网络环境下的“推”模式信息服务具有较高的智能性。这也是传统的定题服务(SDI)不能比的。高效性。高效性是网络环境下“推”模式信息服务的又一个重要特征。Push技术的应用可在网络空闲时启动,有效地利用网络带宽,比较适合传送大数据量的多媒体信息。灵活性。灵活性是指用户可以完全根据自己的方便和需要,灵活地设置连接时间,通过E一mail、对话框、音频、视频等方式获取网上特定信息资源。综合性。“推”模式网络信息服务的实现,不仅需要信息技术设备,而且还依赖于搜寻软件、分类标引软件等多种技术的综合[6]。但在当前信息技术的发展阶段,“推”技术还存在很大的缺陷,比如:不能确保信息发送,没有状态跟踪,缺乏群组管理功能等等。因此,国内外的研究者们又提出超级推(BeyondPush)技术的理论。所谓超级推技术是在保留、继承、完善了Push的优点(主动传递和个性化定制),摒弃了Push的诸多缺点之!2硕士学位论文MASTER,5THESIS管后而发展起来的一种新型的Push技术。它的最大特点是在于保证传送。即所有的信息都是在特定的时间送给特定的信息用户,同时保持连续性的用户资料,随时可以知道谁收到了信息,信息是否为该用户定制,用户环境是否适当等等[刀。信息拉取技术常用的、典型的信息拉取技术,如数据库查询,是由用户主动查询数据库,从数据库中拉取所需信息。其主要优点是:针对性好,用户可针对自己的需求有目的地去查询、搜索所需的信息。Intemet上的信息拉取技术可以说是数据库查询技术的扩展和延伸。在网络上,用户面对的不止是一个数据库,而是拥有海量信息的hitemet环境,因此,各种网络信息拉取(查询)的辅助工具—搜索引擎应运而生了。信息推送与信息拉取两种模式各有其特点,在实际中常常是将两者的结合起来,常用的结合方式为:(1)“先推后拉”式。先及时地推送最新信息(更新的动态信息),再有针对性地拉取所需的信息。这样,便于用户注意信息变化的新情况和趋势,从而动态地选取需要深入了解的信息。(2)“先拉后推”式。用户先拉取所需信息,然后根据用户的兴趣,再有针对性地推送相关的其它信息。(3)“推中有拉”式。在信息推送过程中,允许用户随时中断、定格在所感兴趣的网页上,作进一步的搜索,主动拉取更丰富的信息。(4)“拉中有推”式。在用户拉取信息的搜索过程中,根据用户输入的关键词,信源主动推送相关信息和最新信息。这样既可以及时地、有针对性时为用户服务,又可以减轻网络的负担,并便于扩大用户范围[8]。因此,信息推送与信息拉取相结合是当前Intemet、数据库系统及其它信息系统为用户提供主动信息服务的一个发展方向。挖掘技术随着功temet的发展,W己b已经成为人类社会的公共信息源。在hitemet给人类带来前所未有的信息机遇的同时,又使得人类的信息环境更加复杂,人硕士学位论文MASTER,5THESIS⑧类如何利用信息的问题非但没有如预想的通过信息技术的发展得到圆满的解决,相反,随着信息技术的发展,信息量的激增,造成了个人实际所需信息量与研触b上的海量信息之间的矛盾,因而也就造成了个人利用信息的困难。在这种情况下,虽然出现了叭范b环境下的专门检索工具,但是由于搜索引擎是由传统检索技术发展而来,在当前用户要求不断提高的情况下,传统的搜索技术己经不能够满足人们的需要。为了更加有效地利用网络信息资源,W七b挖掘作为新的知识挖掘的手段,为Web信息的利用提出了新的解决方案叨。,1姗eb挖掘的内容数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。Web挖掘则是从WWW及其相关的资源和行为中抽取有用的模式和隐含信息。其中WWW及其相关资源是指存在于WWW之上的Web文档及Web服务器上的日志文件以及用户资料,从Web挖掘的概念中应当看出Web挖掘在本质上是一种知识发现的手段,它主要从下面3个方面进行仁’时。(1)Web内容挖掘。W七b内容挖掘是从W匕b数据中抽取知识,以实现Web资源的自动检索,提高web数据的利用效率。随着Intemet的进一步延伸,Web数据越来越庞大,种类越来越繁多,数据的形式既有文本数据信息,也有图像、声音、视频等多媒体数据信息,既有来自于数据库的结构化数据,也有用HTML标记的半结构化数据及非结构化的自由文本数据信息。因而,对W己b内容信息挖掘主要从下面两个角度进行〔”]。一是从信息检索的角度,主要研究如何处理文本格式和超级链接文档,这些数据是非结构化或半结构化的。处理非结构化数据时,一般采用词集方法,用一组组词条来表示非结构化的文本,先用信息评价技术对文本进行预处理,然后采取相应的模型进行表示。另外,还可以用最大字序列长度、划分段落、概念分类、机器学习和自然语言统计等方法来表示文本。处理半结构化数据时,可以利用一些相关算法给超级链接分类,寻求认七b页面关系,抽取规则。同处理非结构化数据相比,由于半结构化数据增加了HTM毛标记信息及Web文档内部超链结构,使得表示半结构化数据的方法更加丰富。二是从数据库的角度,主要处理结构化的W匕b数据库,也就是超级链接14⑧蕊誉蕊文档,数据多采用带权图或者对象嵌入模型(OME),或者关系数据库表示,应用一定的算法,寻找出网站页面之间的内在联系,其主要目的是推导出Web站点结构或者把W匕b变成一个数据库,以便进行更好的信息管理和查询。数据库管理一般分成三个方面:一是模型化,研究认触b上的高级查询语言,使其不局限于关键字查询;二是信息的集成与抽取,把每个W七b站点及其包装程序看成是一个认范b数据源,通过W七b数据仓库(data~house)或虚拟W七b数据库实现多种数据来源的集成;三是叭几b站点的创建与重构,通过研究web上的查询语言来实现建立并维护web站点的途径[’“]。(2)札b结构挖掘。W匕b结构挖掘,主要指的是通过对W七b文档的分析,从文档之间的组织结构获取有用的模式。W匕b内容挖掘研究的是文档内的关系,W七b结构挖掘关注的则是网站中的超级链接结构之间的关系,找到隐藏在一个个页面之后的链接结构模型,可以用这个模型对W七b页面重新分类,也可以用于寻找相似的网站。W七b结构挖掘处理的数据类型为W七b结构化的数据。结构化数据是描述网页内容组织方式的数据,页内结构可以用超文本标记语言等表示成树型结构,此外页间结构还可以用连接不同网页的超链结构表示。文档间的链接反映了文档信息间的某种联系,如隶属平行关系、引用与被引用关系等。对W七b页面的超级链接进行分类,可以判断与识别页面信息间的属性关系。由于Web页面内部存在或多或少的结构信息,通过研究W亡b页面内部结构,可寻找出与用户选定的页面集合信息相关的其它页面信息模式,以检测W己b站点所展示的信息完整程度。③Web行为挖掘。所谓W己b用户行为挖掘主要是通过对认尼b服务器的日志文件以及用户信息的分析,从而获得有关用户的有用模式。W七b行为挖掘的数据信息主要指网络日志中包括的用户行为模式,它包括检索时间、检索词、检索路径、检索结果以及对哪些检索结果进行了浏览。由于W七b自身的异质、分布、动态、无统一结构等特点,使得在认七b网上进行内容挖掘比较困难,它需要在人工智能和自然语言理解等方面有所突破。所幸的是基于W七b服务器的109日志存在着完整的结构,当信息用户访问web站点时,与访问相关的页面、时间、用户ro等信息,日志中都作了相应的记录,因而对其进行信息l5硕士学位论文MASTER,5THESIS⑥挖掘是可行的,也是有意义的。在技术实践过程中,一般先把日志中的数据映射成诸种关系信息,并对其进行预处理,包括清除与挖掘不相关的信息等。为了提高性能,目前对109日志数据信息挖掘采用的方法有路径分析、关联规则、模式发现、聚类分析等。为了提高精确度,行为挖掘也应用到站点结构信息和页面内容信息等方面。挖掘技术在网络信息检索中的应用(l)Web内容挖掘在检索中的应用。W匕b内容挖掘是指从文档内容及其描述中获取知识的过程,由于用传统的信息检索技术对W己b文档的处理不够深入,因此,可以利用叭触b内容挖掘技术来对网络信息检索中的W己b文档处理部分进行进一步的完善,具体而言表现在以下几个方面。①文本总结技术。文本总结技术是指从文档中抽取出关键信息,然后以简洁的形式对W匕b文档的信息进行摘要或表示。这样用户通过浏览这些关键信息,就可以对W七b网页的信息有大致的了解,决定其相关性并对其进行取舍。②文本分类技术。W匕b内容挖掘中的文本分类指的是按照预先定义的主题类别,利用计算机自动为文档集合中的每一个文档进行分类。分类在网络信息检索中的价值在于可以缩小检索范围,大大提高查准率。目前,己经出现了很多文本分类技术,如TFIFF算法等,由于文本挖掘与搜索引擎所处理的文本几乎完全一样,所以可以直接将文本分类技术应用于搜索引擎的自动分类之中,通过对大量页面自动、快速、有效的分类,来提高文档检索的查准率。③文本聚类技术。文本聚类与文本分类的过程J险洽相反,文本聚类指的是将文档集合中的文档分为更小的簇,要求同一簇内的文档之间的相似性尽可能大,而簇与簇之间的关系尽可能小,这些簇相当于分类表中的类目。文本聚类技术不需要预先定义好的主题类别,从而使得搜索引擎的类目能够与所收集的信息相适应。文本聚类技术与人工分类相比,它的分类更加迅速、客观。同时,文本聚类可与文本分类技术相结合,使得信息处理更加方便。可以对检索结果进行分类,并将相似的结果集中在一起。(2)Web结构挖掘在网络信息检索中的应用。W匕b的信息组织方式采用了一种非平面结构,一般来说W己b的信息组织方式是根据内容来进行组织的。但是由于W匕b的这些结构信息比较难以处理,所以搜索引擎一般不处理这些信16硕士学位论文MASTER,S竹正515⑧息,而是将叭触b页面作为平面机构的文本进行处理。但是,在从触b结构挖掘中,通过对研触b文档组织结构的挖掘,搜索引擎可以进一步扩展搜索引擎的检索能力,改善检索效果〔’3]。(3)脆b行为挖掘在网络信息检索中的应用。认触b行为挖掘是一种通过挖掘总结出用户的检索行为的模式。用户的检索行为一直是信息检索中重要的研究内容,通过研触b行为挖掘,不仅可以发现多数用户潜在共同的行为模式,而且还可以发现单个用户的个性化行为,对这些模式进行研究,可以更好地对搜索引擎的检索效果进行反馈,以便进一步改进搜索策略,提高检索效果。挖掘技术的局限及方向(1)孔b内容挖掘。W七b上的数据不管是用HTML还是XML标记语言表示,都不能完全解决W七b数据的非结构性问题,特别是汉语句子格式繁多,虚词、实词没有绝对的界限,切分词难度大,这些是造成无法对数据进行完全自动标引的根本性问题,因此,从七b内容挖掘技术有必要结合数据仓库等信息技术进行信息存储,并最终实现智能化、自动化的数据表示和标引,以供搜索之用。通常数据的表示和数据的利用形式是相互关联的,因此,设计相应的具有高查全率和查准率的挖掘算法也和数据表示一样是未来的方向之一。另外多媒体数据如何进行识别分类标引,这也是未来的研几b内容挖掘研究的难点和方向。(2)梅b结构数据挖掘。随着Intemet的迅猛发展,网站的内容也越来越丰富,结构也越来越庞杂,用有向图表示巨型网站链接结构将不能满足数据处理的需要,需要设计新的数据结构来表示网站结构。由于用来作对比分析发现问题所在的用户使用信息只有日志流,那么,对用户使用日志流中每一链接关系如何识别、采用什么结构表示、如何抽取有用的模式等等,不仅是认飞b行为挖掘的重要研究内容也是网站结构挖掘的重要研究方向之一。(3),eb用户行为挖掘。由于Iniemet传输协议HTTP的无状态性,客户端、代理服务器端缓存的存在,使用户访问日志分别存在于服务器、代理服务器和客户端,因此,从W七b用户访问日志中研究用户访问规律最大的难点在于如何把分布于不同位置的访问日志经过预处理,形成一个个用户一次的访问期间。通常来讲,对于静态W七b网站,服务器端的日志容易取得,客户端和代l7理服务器用户访问日志不容易取得;其次,由于一个完整的W匕b是由一个个图片和框架页面组成的,而用户访问服务器也有并发性,在确定用户访问内容时,必须从服务器日志中甄选出某个用户实际请求的页面和页面的主要内容。另外,由于目前已经有的数据挖掘算法主要是在大量交易数据基础上发展起来的,在处理海量Web用户访问日志中也需要重新设计算法结构〔’41。信息过滤技术hitemet开放式的环境,为人们检索和利用信息提供了极大的方便,但同时,网络环境也为人们及时准确地检索到所需信息带来了麻烦。这是因为,第一,网络环境中信息的来源复杂多样,随意性大,任何人、任何单位不管其背景和动机如何都可以在网络上发布信息,信息的产生和传播没有经过筛选和审定,因此信息的可靠性、质量和价值成为用户普遍担心的一大问题;第二,目前大多数据搜索工具的检索范围是综合性的,它们的Robots尽可能地把各种网页抓回来,经过简单加工后存放在数据库中备检;第三,搜索引擎直接提供给用户的检索途径大都是基于关键词的布尔逻辑匹配,返回给用户的就是所有包括关键词的文献,这样的检索结果在数量上远远超出了用户的吸收和使用能力,让人感到束手无策。这就是人们经常谈论的“信息过载”、“信息超载”现象。信息过滤技术就是在这样的背景下开始受到人们的重视,它的目的就是让搜索引擎具有更多的“智力”,让搜索引擎能够更加深入、更加细致地参与到用户的整个检索过程中,从关键词的选择、检索范围的确定到检索结果的精炼,帮助用户在浩如烟海的信息中找到和需求真正相关的资料。信息过滤模型信息过滤其实质仍是一种信息检索技术,因此它仍依托于某一信息检索模型,不同的检索模型有不同的过滤方法。51。(1)利用布尔逻辑模型进行过滤。布尔模型是一种简单的检索模型。在检索中,它以文献中是否包含关键词来作为取舍标准,因此,它不需要对网页数据进行深度的加工。最简单的关键词表可以设计成只有三个字段:关键词、包括关键词的文献号、关键词在相应文献中出现的次数。检索时,用户提交关键词……………………………………太长 发不全 希望对你有用 实在不行联系我(给我留言)我发给你邮箱。
我给你找了一篇,摘要如下:随着Internet在全世界范围内迅猛发展,网上庞大的数字化信息和人们获取信息之间的矛盾日益突出。因此,对网络信息的检索技术及其发展趋势进行探讨和研究,是一个既迫切而又实用的课题。本文通过对网络信息检索的基本原理、网络信息检索的技术及工具、网络信息检索的现状等方面进行分析研究,并对网络信息检索的发展趋势进行了预测,旨在寻找提高网络信息检索的手段和方法的有效途径,并最终提高网络信息的检索效果,使得网络信息资源得到充分有效地利用。 全文主要包括六个部分,第一部分为网络信息检索述评,主要是阐述了网络信息检索所涉及到的有关概念,如信息检索技术、网络信息检索的特点及网络信息检索效果评价。第二部分重点讨论了网络信息检索的基本技术。如信息推拉技术、数据挖掘技术、信息过滤技术、自然语言处理技术等等,旨在弄清网络信息检索的技术支撑,为预测网络信息检索的发展趋势作下铺垫。第三部分对网络信息检索的重要工具——搜索引擎进行了阐述,主要从其检索机制入手,分析了不同种类的搜索引擎的检索特点及功能。其独到之处在于对搜索引擎的基本功能进行了比较全面的概括,并对目前流行的搜索引擎进行科学的分类...第四部分分析讨论了检索技术的另一分支—基于内容的检索技术第五部分则分析了网络信息搜索工具的局限,主要从文本信息检索和多媒体信息检索两方面进行阐述。好不容易给转成 .txt文本,贴在下面:网络信息资源网络信息资源是指“通过国际Intemet可以利用的各种信息资源”的总称。随着Intemet的迅速发展,网上信息资源也以指数形式增加,网络信息资源作为一种新型的信息资源,发挥着越来越重要的作用,其内容几乎无所不包,涉及政治、经济、文化、科学、娱乐等各个方面;其媒体形式多种多样,包括文本、图形、图像、声音、视频等;其范围覆盖社会科学、自然科学、人文科学和工程技术等各个领域。信息检索技术信息检索技术是现代信息社会中非常关键的技术之一。信息检索是指将信息按一定的方式组织和存储起来,并根据信息用户的信息需求查找所需信息的过程和技术,所以信息检索的全称又叫“信息存储与检索”。狭义的信息检索仅指从信息集合中找出所需信息的过程,也就是利用信息系统检索工具查找所需信息的过程。人们获取信息源的方式主要有:①遵循传统的检索方法在浩如烟海的图书馆资料中,通过人工查找索引找到对应的文献索引号再获取文献原文;②联机信息检索。这其中也存在一个发展过程,由检索结果来看,从提供目录、文摘等相关的二次信息检索到可以直接获得电子版的全文;由检索方法来看,从对特定关键词或者如作者、机构等辅助信息作为检索入口的常规检索到以原始文献中任意词检索的全文检索等等。其中,全文检索由于其包含信息的原始性、信息检索的彻底性、所用检索语言的自然性等特点在近年来发展比较迅速,成为深受人们关注的一种非常有效的信息检索技术,它是从大容量文档库中精确定位所需信息的最有效手段l3]。.信息检索其检索方式有:浏览器方式和搜索引擎方式。(l)浏览器方式(Br,singsystelns)。只要能够进入hitemct就能够通过浏览器,利用HTTP协议提供的WV乃万服务,浏览认触b页面和通过W匕b页面提供的检索方式访问数据库。(2)搜索引擎方式(SearehEngines)。搜索引擎是intemet提供公共信息检索服务的W七b站点,它是以一定的技术和策略在intemet中搜集和发现网络信息,并对网络信息进行理解、提取和处理,建立数据库,同时以认倪b形式提供一个检索界面,供用户输入检索关键词、词组或短语等检索项,代替用户在数据库中查找出与提问相匹配的记录,同时返回结果且按相关度排序输出,从而起到快速查找信息的目的。搜索引擎所处理的信息资源主要包括万维网服务器上的信息,另外还包括电子邮件和新闻组信息。搜索引擎服务的宗旨是为满足用户的信息需要,所以它是面向用户的,采用的方式是交互式的。网络信息检索工具采用主动提交或自动搜索两种方法搜索数据。网络信息检索效果评价目前,得到普遍认同的检索效果的评价标准主要有以下几个:查全率、查准率、收录范围、输出格式,其中以查全率和查准率最为重要。现代信息科学技术的发展,为人们提供了多种多样的信息获取和传送方法及技术,从“信源”与“用户”的关系来看,可分为两种模式:“信息推送”模式(InformationPush),由“信源”主动将信息推送给“用户”,如电台广播;“信息拉取”模式(InformationPull),由“用户”主动从“信源”中拉取信息,如查询数据库。信息推送技术“推”模式网络信息服务,是基于网络环境下的一种新的服务形式,即信息服务者在网上利用“Push”技术为特定用户开展信息服务的方式。Push技术之所以成为Intemet上一项新兴的技术,是因为借助该技术使网络信息服务具有主动性,不仅可以直接把用户感兴趣的信息推送给用户,而且可有效地利用网络资源,提高网络吞吐率;再者,Push技术还允许用户与提供信息的服务器之间透明地进行通信,极大地方便了用户。所谓Push技术,又称“推送”技术、Web广播(Webeasting)技术,实质上是一种软件,这种软件可以根据用户定义的准则,自动搜集用户最可能发生兴趣的信息,然后在适当的时候,将其传递至用户指定的“地点”。因而从技术上看,“推”模式网络信息服务就是具有一定智能性的、可以自动提供信息服务的一组计算机软件,该软件不仅能够了解、发现用户的兴趣(可能关心的某些主题的信息),还能够主动从网上搜寻信息,并经过筛选、分类、排序,然后按照每个用户的特定要求,主动推送给用户141。(l)信息推送方式。信息推送方式分两类,即网播方式和智能方式。网播方式有:频道式推送。频道式网播技术是目前普遍采用的一种模式,它将某些页面定义为浏览器中的频道,用户可像选择电视频道那样接受有兴趣的网播信息;邮件式推送,用电子邮件方式主动将所推送信息发布给各用户,如国际会议的通知、产品的广告等:网页式推送。在一个特定网页内将所推送信息发布给各用户,如某企业、某组织、某个人的网页;专用式推送。采用专门的信息发送和接收软件,信源将信息推送给专门用户,如机密的点对点通信。智能推送方式有:操作式推送(客户推送式),由客户数据操作启动信息推送。当某客户对数据进行操作时,把修改后的新数据存入数据库后,即启动信息推送过程,将新数据推送给其他客户;触发式推送(服务器推送式),由ll硕士学位论文MASTER,5THESIS⑧数据库中的触发器启动信息推送过程,将新数据推送给其他客户,当数据发生变化,如出现增加(Insert)、删除(Delete)、修改(update)操作时,触发器启动信息推送过程。(2)信息推送的特征。信息推送的特征有:主动性、针对性、智能性、高效性·灵活性和综合性I5]。主动性。Push技术的核心就是服务方不需要客户方的及时请求而主动地将数据传送到客户方。因而,主动性是“推”模式网络信息服务最基本特征之一。这也是它与基于浏览器的“拉”(Pull)模式的被动服务的鲜明对比。针对性(个性化)。针对性是说,Push技术可以针对用户的特定信息需求进行检索、加工和推送,并根据用户的特定信息需求为其提供个人定制的检索界面。智能性。Push服务器能够根据用户的要求自动搜集用户感兴趣的信息并定期推送给用户。甚至,Push技术中的“客户代理(ClientAgent)”可以定期自动对预定站点进行搜索,收集更新信息送回用户。同时个人信息服务代理和主题搜索代理还可为了提高“推送”的准确性,控制搜索的深度,过滤掉不必要的信息,将认飞b站点的资源列表及其更新状态配以客户代理完成。因而,网络环境下的“推”模式信息服务具有较高的智能性。这也是传统的定题服务(SDI)不能比的。高效性。高效性是网络环境下“推”模式信息服务的又一个重要特征。Push技术的应用可在网络空闲时启动,有效地利用网络带宽,比较适合传送大数据量的多媒体信息。灵活性。灵活性是指用户可以完全根据自己的方便和需要,灵活地设置连接时间,通过E一mail、对话框、音频、视频等方式获取网上特定信息资源。综合性。“推”模式网络信息服务的实现,不仅需要信息技术设备,而且还依赖于搜寻软件、分类标引软件等多种技术的综合[6]。但在当前信息技术的发展阶段,“推”技术还存在很大的缺陷,比如:不能确保信息发送,没有状态跟踪,缺乏群组管理功能等等。因此,国内外的研究者们又提出超级推(BeyondPush)技术的理论。所谓超级推技术是在保留、继承、完善了Push的优点(主动传递和个性化定制),摒弃了Push的诸多缺点之,2硕士学位论文MASTER,5THESIS管后而发展起来的一种新型的Push技术。它的最大特点是在于保证传送。即所有的信息都是在特定的时间送给特定的信息用户,同时保持连续性的用户资料,随时可以知道谁收到了信息,信息是否为该用户定制,用户环境是否适当等等[刀。信息拉取技术常用的、典型的信息拉取技术,如数据库查询,是由用户主动查询数据库,从数据库中拉取所需信息。其主要优点是:针对性好,用户可针对自己的需求有目的地去查询、搜索所需的信息。Intemet上的信息拉取技术可以说是数据库查询技术的扩展和延伸。在网络上,用户面对的不止是一个数据库,而是拥有海量信息的hitemet环境,因此,各种网络信息拉取(查询)的辅助工具—搜索引擎应运而生了。信息推送与信息拉取两种模式各有其特点,在实际中常常是将两者的结合起来,常用的结合方式为:(1)“先推后拉”式。先及时地推送最新信息(更新的动态信息),再有针对性地拉取所需的信息。这样,便于用户注意信息变化的新情况和趋势,从而动态地选取需要深入了解的信息。(2)“先拉后推”式。用户先拉取所需信息,然后根据用户的兴趣,再有针对性地推送相关的其它信息。(3)“推中有拉”式。在信息推送过程中,允许用户随时中断、定格在所感兴趣的网页上,作进一步的搜索,主动拉取更丰富的信息。(4)“拉中有推”式。在用户拉取信息的搜索过程中,根据用户输入的关键词,信源主动推送相关信息和最新信息。这样既可以及时地、有针对性时为用户服务,又可以减轻网络的负担,并便于扩大用户范围[8]。因此,信息推送与信息拉取相结合是当前Intemet、数据库系统及其它信息系统为用户提供主动信息服务的一个发展方向。挖掘技术随着功temet的发展,W己b已经成为人类社会的公共信息源。在hitemet给人类带来前所未有的信息机遇的同时,又使得人类的信息环境更加复杂,人硕士学位论文MASTER,5THESIS⑧类如何利用信息的问题非但没有如预想的通过信息技术的发展得到圆满的解决,相反,随着信息技术的发展,信息量的激增,造成了个人实际所需信息量与研触b上的海量信息之间的矛盾,因而也就造成了个人利用信息的困难。在这种情况下,虽然出现了叭范b环境下的专门检索工具,但是由于搜索引擎是由传统检索技术发展而来,在当前用户要求不断提高的情况下,传统的搜索技术己经不能够满足人们的需要。为了更加有效地利用网络信息资源,W七b挖掘作为新的知识挖掘的手段,为Web信息的利用提出了新的解决方案叨。,1姗eb挖掘的内容数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。Web挖掘则是从WWW及其相关的资源和行为中抽取有用的模式和隐含信息。其中WWW及其相关资源是指存在于WWW之上的Web文档及Web服务器上的日志文件以及用户资料,从Web挖掘的概念中应当看出Web挖掘在本质上是一种知识发现的手段,它主要从下面3个方面进行仁时。(1)Web内容挖掘。W七b内容挖掘是从W匕b数据中抽取知识,以实现Web资源的自动检索,提高web数据的利用效率。随着Intemet的进一步延伸,Web数据越来越庞大,种类越来越繁多,数据的形式既有文本数据信息,也有图像、声音、视频等多媒体数据信息,既有来自于数据库的结构化数据,也有用HTML标记的半结构化数据及非结构化的自由文本数据信息。因而,对W己b内容信息挖掘主要从下面两个角度进行〔”]。一是从信息检索的角度,主要研究如何处理文本格式和超级链接文档,这些数据是非结构化或半结构化的。处理非结构化数据时,一般采用词集方法,用一组组词条来表示非结构化的文本,先用信息评价技术对文本进行预处理,然后采取相应的模型进行表示。另外,还可以用最大字序列长度、划分段落、概念分类、机器学习和自然语言统计等方法来表示文本。处理半结构化数据时,可以利用一些相关算法给超级链接分类,寻求认七b页面关系,抽取规则。同处理非结构化数据相比,由于半结构化数据增加了HTM毛标记信息及Web文档内部超链结构,使得表示半结构化数据的方法更加丰富。二是从数据库的角度,主要处理结构化的W匕b数据库,也就是超级链接14⑧蕊誉蕊文档,数据多采用带权图或者对象嵌入模型(OME),或者关系数据库表示,应用一定的算法,寻找出网站页面之间的内在联系,其主要目的是推导出Web站点结构或者把W匕b变成一个数据库,以便进行更好的信息管理和查询。数据库管理一般分成三个方面:一是模型化,研究认触b上的高级查询语言,使其不局限于关键字查询;二是信息的集成与抽取,把每个W七b站点及其包装程序看成是一个认范b数据源,通过W七b数据仓库(data~house)或虚拟W七b数据库实现多种数据来源的集成;三是叭几b站点的创建与重构,通过研究web上的查询语言来实现建立并维护web站点的途径[“]。(2)札b结构挖掘。W匕b结构挖掘,主要指的是通过对W七b文档的分析,从文档之间的组织结构获取有用的模式。W匕b内容挖掘研究的是文档内的关系,W七b结构挖掘关注的则是网站中的超级链接结构之间的关系,找到隐藏在一个个页面之后的链接结构模型,可以用这个模型对W七b页面重新分类,也可以用于寻找相似的网站。W七b结构挖掘处理的数据类型为W七b结构化的数据。结构化数据是描述网页内容组织方式的数据,页内结构可以用超文本标记语言等表示成树型结构,此外页间结构还可以用连接不同网页的超链结构表示。文档间的链接反映了文档信息间的某种联系,如隶属平行关系、引用与被引用关系等。对W七b页面的超级链接进行分类,可以判断与识别页面信息间的属性关系。由于Web页面内部存在或多或少的结构信息,通过研究W亡b页面内部结构,可寻找出与用户选定的页面集合信息相关的其它页面信息模式,以检测W己b站点所展示的信息完整程度。③Web行为挖掘。所谓W己b用户行为挖掘主要是通过对认尼b服务器的日志文件以及用户信息的分析,从而获得有关用户的有用模式。W七b行为挖掘的数据信息主要指网络日志中包括的用户行为模式,它包括检索时间、检索词、检索路径、检索结果以及对哪些检索结果进行了浏览。由于W七b自身的异质、分布、动态、无统一结构等特点,使得在认七b网上进行内容挖掘比较困难,它需要在人工智能和自然语言理解等方面有所突破。所幸的是基于W七b服务器的109日志存在着完整的结构,当信息用户访问web站点时,与访问相关的页面、时间、用户ro等信息,日志中都作了相应的记录,因而对其进行信息l5硕士学位论文MASTER,5THESIS⑥挖掘是可行的,也是有意义的。在技术实践过程中,一般先把日志中的数据映射成诸种关系信息,并对其进行预处理,包括清除与挖掘不相关的信息等。为了提高性能,目前对109日志数据信息挖掘采用的方法有路径分析、关联规则、模式发现、聚类分析等。为了提高精确度,行为挖掘也应用到站点结构信息和页面内容信息等方面。挖掘技术在网络信息检索中的应用(l)Web内容挖掘在检索中的应用。W匕b内容挖掘是指从文档内容及其描述中获取知识的过程,由于用传统的信息检索技术对W己b文档的处理不够深入,因此,可以利用叭触b内容挖掘技术来对网络信息检索中的W己b文档处理部分进行进一步的完善,具体而言表现在以下几个方面。①文本总结技术。文本总结技术是指从文档中抽取出关键信息,然后以简洁的形式对W匕b文档的信息进行摘要或表示。这样用户通过浏览这些关键信息,就可以对W七b网页的信息有大致的了解,决定其相关性并对其进行取舍。②文本分类技术。W匕b内容挖掘中的文本分类指的是按照预先定义的主题类别,利用计算机自动为文档集合中的每一个文档进行分类。分类在网络信息检索中的价值在于可以缩小检索范围,大大提高查准率。目前,己经出现了很多文本分类技术,如TFIFF算法等,由于文本挖掘与搜索引擎所处理的文本几乎完全一样,所以可以直接将文本分类技术应用于搜索引擎的自动分类之中,通过对大量页面自动、快速、有效的分类,来提高文档检索的查准率。③文本聚类技术。文本聚类与文本分类的过程J险洽相反,文本聚类指的是将文档集合中的文档分为更小的簇,要求同一簇内的文档之间的相似性尽可能大,而簇与簇之间的关系尽可能小,这些簇相当于分类表中的类目。文本聚类技术不需要预先定义好的主题类别,从而使得搜索引擎的类目能够与所收集的信息相适应。文本聚类技术与人工分类相比,它的分类更加迅速、客观。同时,文本聚类可与文本分类技术相结合,使得信息处理更加方便。可以对检索结果进行分类,并将相似的结果集中在一起。(2)Web结构挖掘在网络信息检索中的应用。W匕b的信息组织方式采用了一种非平面结构,一般来说W己b的信息组织方式是根据内容来进行组织的。但是由于W匕b的这些结构信息比较难以处理,所以搜索引擎一般不处理这些信16硕士学位论文MASTER,S竹正515⑧息,而是将叭触b页面作为平面机构的文本进行处理。但是,在从触b结构挖掘中,通过对研触b文档组织结构的挖掘,搜索引擎可以进一步扩展搜索引擎的检索能力,改善检索效果〔3]。(3)脆b行为挖掘在网络信息检索中的应用。认触b行为挖掘是一种通过挖掘总结出用户的检索行为的模式。用户的检索行为一直是信息检索中重要的研究内容,通过研触b行为挖掘,不仅可以发现多数用户潜在共同的行为模式,而且还可以发现单个用户的个性化行为,对这些模式进行研究,可以更好地对搜索引擎的检索效果进行反馈,以便进一步改进搜索策略,提高检索效果。挖掘技术的局限及方向(1)孔b内容挖掘。W七b上的数据不管是用HTML还是XML标记语言表示,都不能完全解决W七b数据的非结构性问题,特别是汉语句子格式繁多,虚词、实词没有绝对的界限,切分词难度大,这些是造成无法对数据进行完全自动标引的根本性问题,因此,从七b内容挖掘技术有必要结合数据仓库等信息技术进行信息存储,并最终实现智能化、自动化的数据表示和标引,以供搜索之用。通常数据的表示和数据的利用形式是相互关联的,因此,设计相应的具有高查全率和查准率的挖掘算法也和数据表示一样是未来的方向之一。另外多媒体数据如何进行识别分类标引,这也是未来的研几b内容挖掘研究的难点和方向。(2)梅b结构数据挖掘。随着Intemet的迅猛发展,网站的内容也越来越丰富,结构也越来越庞杂,用有向图表示巨型网站链接结构将不能满足数据处理的需要,需要设计新的数据结构来表示网站结构。由于用来作对比分析发现问题所在的用户使用信息只有日志流,那么,对用户使用日志流中每一链接关系如何识别、采用什么结构表示、如何抽取有用的模式等等,不仅是认飞b行为挖掘的重要研究内容也是网站结构挖掘的重要研究方向之一。(3),eb用户行为挖掘。由于Iniemet传输协议HTTP的无状态性,客户端、代理服务器端缓存的存在,使用户访问日志分别存在于服务器、代理服务器和客户端,因此,从W七b用户访问日志中研究用户访问规律最大的难点在于如何把分布于不同位置的访问日志经过预处理,形成一个个用户一次的访问期间。通常来讲,对于静态W七b网站,服务器端的日志容易取得,客户端和代l7理服务器用户访问日志不容易取得;其次,由于一个完整的W匕b是由一个个图片和框架页面组成的,而用户访问服务器也有并发性,在确定用户访问内容时,必须从服务器日志中甄选出某个用户实际请求的页面和页面的主要内容。另外,由于目前已经有的数据挖掘算法主要是在大量交易数据基础上发展起来的,在处理海量Web用户访问日志中也需要重新设计算法结构〔41。信息过滤技术hitemet开放式的环境,为人们检索和利用信息提供了极大的方便,但同时,网络环境也为人们及时准确地检索到所需信息带来了麻烦。这是因为,第一,网络环境中信息的来源复杂多样,随意性大,任何人、任何单位不管其背景和动机如何都可以在网络上发布信息,信息的产生和传播没有经过筛选和审定,因此信息的可靠性、质量和价值成为用户普遍担心的一大问题;第二,目前大多数据搜索工具的检索范围是综合性的,它们的Robots尽可能地把各种网页抓回来,经过简单加工后存放在数据库中备检;第三,搜索引擎直接提供给用户的检索途径大都是基于关键词的布尔逻辑匹配,返回给用户的就是所有包括关键词的文献,这样的检索结果在数量上远远超出了用户的吸收和使用能力,让人感到束手无策。这就是人们经常谈论的“信息过载”、“信息超载”现象。信息过滤技术就是在这样的背景下开始受到人们的重视,它的目的就是让搜索引擎具有更多的“智力”,让搜索引擎能够更加深入、更加细致地参与到用户的整个检索过程中,从关键词的选择、检索范围的确定到检索结果的精炼,帮助用户在浩如烟海的信息中找到和需求真正相关的资料。信息过滤模型信息过滤其实质仍是一种信息检索技术,因此它仍依托于某一信息检索模型,不同的检索模型有不同的过滤方法。51。(1)利用布尔逻辑模型进行过滤。布尔模型是一种简单的检索模型。在检索中,它以文献中是否包含关键词来作为取舍标准,因此,它不需要对网页数据进行深度的加工。最简单的关键词表可以设计成只有三个字段:关键词、包括关键词的文献号、关键词在相应文献中出现的次数。检索时,用户提交关键词。
175 浏览 3 回答
202 浏览 2 回答
146 浏览 5 回答
188 浏览 5 回答
210 浏览 4 回答
129 浏览 5 回答
288 浏览 1 回答
85 浏览 2 回答
130 浏览 3 回答
176 浏览 3 回答
167 浏览 3 回答
293 浏览 4 回答
305 浏览 3 回答
260 浏览 3 回答
180 浏览 5 回答