正余弦定理若干推论的探究与应用(一)探究目的正弦定理和余弦定理是高中数学中重要的三角公式,它们具有广泛的应用。而在教材中对它们的研究却比较单一。在学习上,为了开拓视野,更加体会到数学灵活多变的奥妙,我们有必要结合三角变换的知识对其进行总结、探究及延伸。因此,我们探究了它的一些变式以及应用。(二)探究过程、应用及结论 (1)正余弦定理 1、正弦定理:a/ sinA=b/ sinB=c/ sinC =2R 2、余弦定理:a^2=b^2+c^2-2bcCosA CosA=(c^2+b^2-a^2)/2bc b^2=a^2+c^2-2acCosB CosB=(a^2+c^2-b^2)/2ac c^2=a^2+b^2-2abCosC CosC=(a^2+b^2-c^2)/2ab(2)正余弦定理的推论 设三角形ABC的三个内角A、B、C所对的边分别为a、b、c,则 推论1、acosA+bcosB = ccos(A-B)≤C......① bcosB+ccosC = acos(B-C) ≤ a......② acosA+ccosC = bcos(A-C) ≤b......③ 证明:由正弦定理得, acosA+bcosB =2RsinAcosA+2RsinBcosB =R(2sinAcosA+2sinBcosB) =R(sin2A+sin2B) =R{sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]} =R[sin(A+B)cos(A-B)+cos(A+B)sin(A-B)+sin(A+B)cos(A-B)-cos (A+B)sin(A-B)] =2Rsin(A+B) cos(A-B) =2Rsin(�-C) cos(A-B) =2RsinC cos(A-B) =Ccos(A-B) 又A、B∈(0,�),-1≤cos(A-B) ≤1 ∴ccos(A-B)≤C,当且仅当A=B时取等号. 同理,由三角形三边和三个角的对称性可证②③式. 应用:在⊿ABC中,求证:cosAcosBcosC ≤1/8 证明:①当⊿ABC为钝角三角形或直角三角形时,cosA、cosB、cosC其中必有一个小于等于0,故结论成立. ②若⊿ABC为锐角三角形时,由推论(1)及均值不等式得 a≥bcosB+ccosC≥2倍根号bcosBccosC>0......① b≥acosA+ccosC≥2倍根号acosAccosC>0......② C≥acosA+bcosB≥2倍根号acosAbcosB>0......③ ①×②×③得abC≥8abCcosAcosBcosC ∴cosAcosBcosC≤1/8 结论:①在三角形中,任意两边与其对角的余弦值的和等于第三边与两 边的对角差的余弦的积,小于或等于第三边。 ②三角形三个角的余弦值的积恒小于或等于1/8. ③观察式子,我们可以得出 a、若已知三角形中的两角以及对应两边,可知第三边的取值范围或最小值。 b、若已知三角形中的两角,可知三边之间的数量关系。 推论2、c/(a+b)=sin(C/2)/cos[(A-B)/2] ≥sin(C/2) ......① b/(a+c)=sin(B/2)/cos[(A-C)/2] ≥sin(B/2) ......② a/(b+c)=sin(A/2)/cos[(B-C)/2] ≥sin(A/2) ......③ 证明:由正弦定理, c/(a+b)=(2RsinC)/[2R(sinA+sinB)] =sin(�-c)/(sinA+sinB) =sin(A+B)/ (sinA+sinB) =sin[(A+B)/2+(A+B)/2]/{sin[(A+B)/2+(A-B)/2]+ sin[(A+B)/2-(A-B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{ sin[(A+B)/2]cos[(A- B)/2]+sin[(A-B)/2]cos[(A+B)/2]+sin[(A+B)/2]cos [(A-B)/2]—sin[(A-B)/2]cos[(A+B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{2sin[(A+B)/2]cos[(A- B)/2]} =cos[(A+B)/2]/ cos[(A-B)/2] =sin[�/2—(A+B)/2]/ cos[(A-B)/2] =sin(C/2)/cos[(A-B)/2] 又A、B∈(0,�) ∴ 0<cos[(A-B)/2] ≤1 ∴sin(C/2)/ cos[(A-B)/2]≥sin(C/2), 当且仅当A=B时取等号. 同理可证②③式.应用:已知在⊿ABC中,设a+c=2b,A-C=60度,求sinB.解:由题设和推论2可知, b/(a+c)=b/2b=1/2=sin(B/2)/[cos(A-C)/2]=sin(B/2)/cos(�/6) ∴sin(B/2)=(根号3)/4 ∴cos(B/2)=根号(1-sin(B/2)^2)= (根号13)/4 ∴sinB=2 sin(B/2) cos(B/2)= (根号39)/2 结论:①在三角形中,任意一边与另外两边和的比值,等于该边的 半对角的正弦与另两边的对角差半角的余弦,这是模尔外得公 式的其中一组。 ②应用: a、求解斜三角形未知元素后,可用它验算。 b、若已知三边可求角的最大值。 推论3、a≥2(根号bC)sin(A/2) ......① b≥2(根号aC)sin(B/2) ......② c≥2(根号ab)sin(C/2) ......③ 证明:∵(b-c)^2≥0 ∴b^2+c^2≥2bc 由余弦定理,a^2= b^2+c^2-2bccosA≥2bc-2bccosA =2bc(1-cosA)=4bcsin(A/2)^2 ∴a≥2(根号bC)sin(A/2), 同理可证②③式. 应用:在⊿ABC中,已知A=�/3,a=10,求bC的最大值。 解:由题设和推论3可知,10≥2(根号bC)sin(60度/2) ∴(根号bC)≤10 ∴bC≤100 故bC的最大值为100. 结论:①在三角形中,任意一边大于或等于另外两边二次方根的二倍与 该边的半对角正弦的积。 ②应用: a、已知两边和一角可求该角所对边的取值范围或最小值。 b、已知一边以及其对角可求另两边乘积的最大值。 C、已知三边可求角的最大值。 推论4、(a^2- b^2)/ c^2= (sinA^2-sinB^2)/ sinC^2……① (b^2- c^2)/ a^2= (sinB^2-sinC^2)/ sinA^2……② (a^2- c^2)/ b^2= (sinA^2-sinC^2)/ sinB^2……③ 证明:由正弦定理得, (a^2- b^2)/ c^2=[4R^2(sinA^2-sinB^2)]/( 4R^2*sinC^2) =(sinA^2- sinB^2)/ sinC^2 同理可证②③式. 应用:在⊿ABC中,A、B、C的对边分别为a、b、c,证明: (a^2- b^2)/ c^2=sin(A-B)/sinC 证明:由题设和推论4可知, (a^2- b^2)/ c^2 =(sinA^2- sinB^2)/ sinC^2 =(sinA+sinB)(sinA-sinB)/sinC^2 ={sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]}{sin[(A+B)/2+ (A-B)/2]—sin[(A+B)/2-(A-B)/2]}/{sinCsin[�—(A+B)]} ={2sin[(A+B)/2] cos[(A-B)/2]}{2cos[(A+B)/2]sin[(A- B)/2]}/[sinCsin(A+B)] ={2sin[(A+B)/2] cos[(A+B)/2]}{2sin[(A—B)/2] cos[(A- B)/2]}/[sinCsin(A+B)] =[sin(A+B)sin(A—B)]/ [sin(A+B) sinC] =sin(A—B)/ sinC 结论:①在三角形中,任意两边的平方差与第三边的平方之比等于 两边对角正弦的平方差与第三边对角的正弦的平方之比。 推论5、sinA^2= sinB^2+sinC^2-2sinBsinCcosA……① sinB^2= sinA^2+sinC^2-2sinAsinCcosB……② sinC^2= sinB^2+sinA^2-2sinBsinAcosC……③ 证明:由正弦定理和余弦定理得, (2RsinA)^2=(2RsinB)^2+(2RsinC)^2-2(2RsinA (2RsinB)cosA 化简得sinA^2= sinB^2+sinC^2-2sinBsinCcosA 同理可证②③式. 应用:求(sin10度)^2+(sin50度)^2+sin10度sin50度的值. 解:构造⊿ABC,使A=10度,B=50度,C=120度,应用推论5得 原式=(sin10度)^2+(sin50度)^2-(-1/2)×2sin10度sin50 度 =(sin10度)^2+(sin50度)^2-2sin10度sin50度cos120度 =(sin120度)^2 =3/4 结论:①在三角形中,任意角正弦的平方等于另外两角正弦的平方 和减去2倍两角正弦与该角余弦的积。 ②应用: a、若已知任意两角角度或正弦,可求另外一角余弦及角度。 b、若式子(sinA)^2+(sinB)^2+sinAsinB满足A+B=�/3,则 其值恒为3/4. C、若存在形如sinB^2+sinC^2-2sinBsinCcosA的式子,其值为 sinA^2. 推论6、a=bcosC+ccosB……① b=acosC+ccosA……② c=acosB+bcosA……③ 证明:由余弦定理得, b^2+c^2=(c^2+a^2-2accosB)+(a^2+b^2-2abcosC) 化简得a=bcosC+ccosB 同理可证②③式成立. 应用:已知�、�∈(0,�/2),且3(sin�)^2+2(sin�)^2=1, 3sin2�-2Sin2�=0,求证:�+2�=90度. 证明:∵3(sin�)^2+2(sin�)^2=1 ∴3(1-cos2�)/2+2(1- cos2�)/2=1 ∴3cos2�+2 cos2�=3 ∴2cos2�=3(1- cos2�)>0 ∴3 cos2�=3-2 cos2�>0 ∴2�、2�∈(0,�/2) 又3sin2�-2Sin2�=0 ∴3/Sin2�=2/sin2� 构造⊿ABC,使A=2�,B=2�,BC=2,则AC=3 由推论6得,AB=ACcos2�+BCcos2� = 3cos2�+2cos2�=3 ∴AB=AC ∴⊿ABC为等腰三角形. ∴C=B=2� 而在⊿ABC中,A+B+C=2�+2�+2�=180度 ∴�+2�=90度 结论:①推论6为著名的射影定理。 ②应用:可处理边、角、弦三者的转化问题。
Easy to overlook the answer"Fact is stranger than fiction, we also have many interesting mathematical kingdom. For example, in the ninth book, I now have a problem in the workbook, education, said: "this is a passenger train to the west, the east from 45 kilometers per hour line, stop, then after hours just what the halfway point of the two cities from 18 km, two things WangXing? How many kilometres from town with the small English in this problem, the calculation method and the results are not the same. XingSuan king of the number of kilometers than small calculates km less, but the results of the two to say. This is why? You want to come? You count them two listed in the results." Actually, this problem is we can very quickly made a kind of method is: 45 x = (km), + 18 = (km), * 2 = 261 (km), but look close scrutiny, he felt something was wrong. Actually, here we overlooked a very important conditions, "this is just what the halfway point of the city from the conditions of 18 kilometers away from" the word ", not to say, or more than halfway point. If it is not from the middle point to 18 kilometre, column type is the front, if is a kind of more than 18 kilometers halfway, column type should is 45 by = (km), = (km), x 2 = 189 (km). So the correct answer is: 45 x = (km), + 18 = (km), * 2 = 261 (km) and 45 x = (km), = (km), x 2 = 189 (km). Two answers, . WangXing answers with the small English answer is the daily learning, often have many problems, aim to answer is more in practice or neglected in the exam, we need to carefully examines the topic is, life experience, close scrutiny, correct understanding of cet4. Otherwise easily overlooked the mistake, the "0"0, it is the earliest human contact number. Our ancestors started only know no and have no is 0, 0, so did? Remember the elementary school teacher once said, "any number of minus itself is equal to 0, 0 means without number." That is simply not true. We all know that the 0 degrees centigrade thermometer said the freezing point of water (. a standard under the pressure of the mixture of water temperature), including 0 is solid and liquid water differentiator. But in Chinese characters, 0 means that a zero, such as: 1 more pieces), Decimal purpose. 2) not certain units... Thus, we know that the "no amount is 0, but not without number, 0 solid and liquid said the differentiator, etc.""Any divided by 0." no significance for This is the primary school teacher still talking to a conclusion about the "0", then the division (primary) is divided into several copies will be a, how much each. A whole cannot into a "0" no significance. Then I realized the a / 0 0 0 to limit can be expressed in the variable (a variable in the process of changing its absolute than any small forever is positive), shall be equal to a variable in the infinite (changes in its absolute than any big is positive). Get a theorem about 0 "zero limits of variables, called an infinitesimal".
容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。
摘要:课堂作为学生接受知识的主要场所之一,教师的课堂教学效率问题备受瞩目。高中数学课堂教学效率的提高,在很大程度上可以激发学生学习数学的兴趣和信心。在此过程中,授课教师应根据教学任务和实际情况,借助多媒体技术和现代化教学手段来激发学生在数学学习中的兴趣,引导学生发现问题并解决问题,从而提高教学质量。
关键词:高中数学;教学;效率;策略
高中数学以其难度大、知识点多且课时量大的特点,在所有高中课程中一直占据着较大的比例。因此,高中数学的课堂教学效率决定着学生对数学这一学科的本质认知以及是否可以重拾或加深学习数学的兴趣,授课教师要怎样改变单一古板的教学模式,如何运用恰当有效的教学方法,将会对学生日后的数学学习产生深远影响。本文针对此问题提出三种策略以提高高中数学课堂的教学效率。
1兴趣创造知识
兴趣是做任何事情的根基,尤其是在探究数学的道路上。数学是一门相对枯燥乏味的科学,如何提起学生学习数学的兴趣是高中数学授课教师在准备教学过程中应首先考虑的问题,并且要将此问题融入到设计教学的内容、方法和手段中。授课教师应做到以下两点:第一,教师应从自身出发彻底改变传统的教学观念和教学模式,让填鸭式、题海式的教学模式远离高中数学课堂。并从学生的实际出发,选取适合高中生认知的方法开展教学。积极营造良好的课堂气氛,一改高中数学课堂压抑沉闷的教学氛围。第二,教师要将课堂还给学生。在新课程标准下,更加强调学生占据课堂学习的主体地位。学生本应是学习的主体,但一直以来的高中数学课堂都是老师教,学生学的单一模式,而这种模式不仅不利于教学质量的提高,而且会磨灭学生对数学学习的兴趣。因此,学生只有变被动为主动的接受知识,才能意识到自己是课堂教学的主体,是学习的主体,才会对学习内容产生兴趣并进行深入研究,并且乐于接受学习中的困难和挑战。综上,高中数学课堂教学效率的提升不仅得益于学生的课堂参与及课后探究,更离不开让学生积极主动去学习的动力——兴趣。
2不是替学生解决问题,而是教学生自己解决问题
高中数学在升学考试中一直占据着较大比例,因此,很多一线数学教师急于培养学生的应试能力,采取大量的题海战术,长此以往,在教师的认知中,学生可以不断在做题解题的过程中意会数学这一学科的真正本质,并掌握相应的解题方法,这是教师认知中普遍存在的错误。教师将解决问题的方法直接授予学生,不仅阻碍了学生思维的发展,而且扼杀了学生勇于创新的主动性和积极性。所以,高中数学课堂教学中,教师的任务不是替学生去解决问题,而是教学生自己去探索并解决问题。教师应鼓励学生的发散思维,多角度考虑问题,让学生养成良好的思维习惯,不拘泥于一种思维形式。鼓励学生自己发现问题,并试图用自己的办法去解决问题。要知道,经验和教训是需要通过尝试和努力之后自己总结出来的,而不是通过别人的行为或想法获取的。此时教师的角色便是积极引导,解答学生在探索过程中遇到的疑惑。
3将科学技术融入高中数学课堂
科学技术作为第一生产力,也要以其独到的形式融入到高中数学课堂,即多媒体技术的应用。数学作为一门较抽象且枯燥乏味的学科,尤其是学生在接触更加抽象、复杂的领域时,多媒体教学以及其他科技手段的引入,将抽象又枯燥的数字及图形变得活灵活现。比如高中几何教学中涉及的图形,以及高中代数教学中涉及的函数教学,其中有众多的数量关系问题,图形结合问题,代数和几何综合性的应用题,传统的这些教学,教师借助传统教学用具,在黑板上体现不直观、不具体,学生理解困难,教学质量不佳,但是,这些问题随着多媒体技术的融入,都迎刃而解。多媒体对图像的表达更加直观,学生对知识点的明确更加清晰,教学效果显著提升。例如,在解决函数问题上,教师可以通过多媒体展示动态函数图像,清晰的坐标图以及收缩可控的图像效果,都会深深印在学生的脑海中,而这样的教学效果是传统的黑板画图教学所达不到的。再比如空间立体几何教学,教师在黑板上很难体现出图形的空间感和立体感,而多媒体却可以弥补这一空缺。即使通过多媒体教学可以培养学生的主体参与意识可以达到师生互动的课堂效果,但多媒体只是填补传统教学漏洞的一种辅助教学手段,所以只有适度使用才能发挥其最大价值,才能更好地提升课堂教学效率,促进教师与学生之间更好的交流和沟通的形成。
4总结
综上所述,高中数学教师应积极构建和谐的师生关系,在教学中激发学生对数学学习的热情和兴趣,积极引导学生发现问题探究问题继而解决问题,并借助多媒体技术以及现代化手段让知识在学生大脑中留下生动形象的记忆,改变高中数学课堂的枯燥氛围。这需要授课教师和学生的积极配合,在完成教学任务的基础上,培养学生的学习能力,从而提高高中数学课堂学习效率。
参考文献:
[1]郝保奎.浅议提高高中数学课堂教学效率的方法[J].现代阅读(教育版),2013,(1):129.
[2]朱亚珍.提高高中数学课堂教学效率策略研究[J].数字化用户,2013,(4):87-88
摘要:当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。
关键词:高中数学;教育;创新能力
1.前言
创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。
2.高中数学教育学生创新意识的养成
创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。
(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。
(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。
3.高中数学教育学成创新能力的培养
数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。
(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。
(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。
(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。
4.结语
当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。
参考文献
1、高中数学教师如何指导高一新生走进数学武增明上海中学数学2004-08-20
163 浏览 6 回答
279 浏览 6 回答
193 浏览 8 回答
122 浏览 3 回答
207 浏览 5 回答
304 浏览 4 回答
257 浏览 4 回答
357 浏览 5 回答
162 浏览 4 回答
136 浏览 5 回答
204 浏览 4 回答
227 浏览 7 回答
293 浏览 3 回答
294 浏览 3 回答
213 浏览 5 回答