1821年,.纳维建立了弹性体平衡和运动的一般方程,弹性波的研究随之展开。1829年,.泊松在研究弹性介质中波的传播问题时,发现在远离波源处有纵波和横波两种类型的波。到1845年,弹性波传播的数学理论已经发展成熟,.斯托克斯证明纵波是胀缩波,1849年又证明横波是畸变波。后来学者们对拉压、扭转和弯曲三种类型的无限长弹性杆中弹性波的传播问题进行了研究,并得到了精确解。瑞利、H.兰姆等人给出了无限平板中的波动方程的解。兰姆在1904年建立了半无限弹性体表面和内部由于扰动线源和点源的作用而引起的波动问题的理论,并得到了问题的解,故该问题称为兰姆问题。在地震学里,兰姆问题应用广泛,但只适用于远场(远离扰动源的地方)。50年代后,弹性波绕射问题的研究取得成果,但主要限于无限弹性介质内球形、圆柱形空腔等方面。不规则孔洞和结构以及半无限介质中波的绕射问题的解析解较难找到,主要是不规则的边界条件很难满足。弹性波在粘弹性介质中传播是一个重要课题,可以用来解释许多地球物理、声学和工程力学现象。复合材料力学的迅速发展,推动了对复合材料中波的传播理论的研究。多孔介质中波的传播理论的研究工作业已开始,它对地球物理学、材料工程、石油勘探等方面有重要实际意义。在精确理论发展的同时,近似解理论也得到发展。有限差分方法先被用于解决短杆中弹性波的传播问题,后被推广到一些复杂结构中波的传播问题。有限元法逐步用于研究弹性波问题,开始用于分析细杆中弹性波的传播,后用于分析各种结构(柱、板、壳体)中的波的传播以及层状介质、正交异性介质中的波的传播等。非线性弹性波的传播问题的研究也取得初步成果。