动物营养与饲料的成本分析
[编辑本段]1. 光合作用的基本概念 中文解释光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化 为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。 英文描述Photosynthesis is the conversion of energy from the Sun to chemical energy (sugars) by green plants. The "fuel" for ecosystems is energy from the Sun. Sunlight is captured by green plants during photosynthesis and stored as chemical energy in carbohydrate molecules. The energy then passes through the ecosystem from species to species when herbivores eat plants and carnivores eat the herbivores. And these interactions form food chains. [编辑本段]2. 光合作用的基本原理光合作用可分为光反应和暗反应(又叫碳反应)两个阶段。 光反应条件:光照、光合色素、光反应酶。场所:叶绿体的类囊体薄膜。过程:①水的光解:2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度等。意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为暗反应提供能量。③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH。 暗反应暗反应的实质是一系列的酶促反应。 条件:暗反应酶。场所:叶绿体基质。影响因素:温度、CO2浓度、酸碱度等。 过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH及ATP提供的能量反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与暗反应。光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 [编辑本段]3. 光合作用的详细机制植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。 原理 植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气 注意事项上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。 光反应和暗反应请参见本词条的“基本原理”栏目。 吸收峰 叶绿素a,b的吸收峰叶绿素a、b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子(以蓝紫光为主,伴有少量红色光),作为能量,将从水分子光解过程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a) 最后传递给 辅酶二 NADP+。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP+带走。一分子NADP+可携带两个氢离子,NADP +2e- +H+ =NADPH .还原性辅酶二 DANPH则在暗反应里面充当还原剂的作用。 有关化学方程式H20→2H+ 1/2O2(水的光解) NADP+ + 2e- + H+ → NADPH(递氢) ADP+Pi→ATP (递能) CO2+C5化合物→2C3化合物(二氧化碳的固定) 2C3化合物→(CH2O)+ C5化合物(有机物的生成或称为C3的还原)ATP→ADP+PI(耗能)能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)注意:光反应只有在光照条件下进行,而只要在满足暗反应条件的情况下暗反应都可以进行。也就是说暗反应不一定要在黑暗条件下进行。 光反应阶段和暗反应阶段的关系①联系:光反应和暗反应是一个整体,二者紧密联系。光反应是暗反应的基础,光反应阶段为暗反应阶段提供能量(ATP)和还原剂(【H】),暗反应产生的ADP和Pi为光反应合成ATP提供原料。②区别:(见下表) 项目光反应暗反应 实质光能→ 化学能,释放O2同化CO2形成(CH2O)(酶促反应)时间短促,以微秒计较缓慢 条件需色素、光和酶不需色素和光,需多种酶场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下) ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)CO2+C5→2C3(在酶的催化下)C3+【H】→(CH2O)+ C5(在酶和ATP的催化下)能量转化叶绿素把光能转化为活跃的化学能并储存在ATP中ATP中活跃的化学能转化变为糖类等有机物中稳定的化学能[编辑本段]4. 光合作用的要点解析 光合色素和电子传递链组分 光合色素 类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:1, 在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡罗卜素与叶黄素能对叶绿素a,b启一定的保护作用。几类色素的吸收光谱不同,叶绿素a,b吸收红,橙,蓝,紫光,类胡罗卜素吸收蓝紫光,吸收率最低的为绿光。特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。 集光复合体(light harvesting complex) 由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。 光系统Ⅱ(PSⅡ) 吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。 细胞色素b6/f复合体(cyt b6/f complex)可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。 光系统Ⅰ(PSI) 能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。 光反应与电子传递P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原 绿叶是光合作用的场所初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 2【2H】+ 4e- 在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统Ⅱ。 P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原。 以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。 光合磷酸化一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原 NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。 ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。 卡尔文原理卡尔文循环(Calvin Cycle)是光合作用的暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。大部分植物会将吸收到的一分子二氧化碳通过一种叫二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖。 C3类植物 二战之后,美国加州大学伯利克分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。此时C14示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。 他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。 卡尔文在实验中发现,标记有C14的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与一直化学物比较,斑点中的化学成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子, 所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO2的植物称为C3植物。后来研究还发现,CO2固定的C3途径是一个循环过程,人们称之为C3循环。这一循环又称卡尔文循环。 C3类植物,如米和麦,二氧化碳经气孔进入叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。
摘 要 厌氧消化技术能够实现废弃物污染防治和综合利用的双重目标,是有机固废处理与处置的趋势。对厌氧消化技术处理有机固废的微生物学机理、因素以及消化工艺的进展进行了综述。 关键词 厌氧消化 有机固体废物 两相消化 有机固体废物通常是指含水率低于85%~90%可生化降解的有机废物,它们一般具有可生化降解性。这些废物中蕴含着大量的生物质能,有效利用这类生物质能源,对实现环境和的可持续发展具有重要意义。 有机固体废物处理的很多。由于有机固废的可生化降解性高,利用生物技术处理有机废物具有潜在优势。生物处理法包括好氧堆肥法和厌氧消化法。近几年来,欧洲各国纷纷将目光投向厌氧消化,兴建有机固废厌氧消化处理厂,日本等国也先后建设了有机固废厌氧消化处理示范工程。但在国内,尽管早有小型沼气池的,高浓度有机污水及污泥处理中也普遍采用厌氧消化的工艺,但应用于固废处理领域的实践很少。因此,很有必要针对国内的实际情况,对有机固废的厌氧消化进行系统研究。1 厌氧消化机理 在研究方面,国内外一些学者对厌氧发酵过程中物质的代谢、转化和各种菌群的作用等进行了大量的研究,但仍有许多需进一步探讨。对厌氧消化的微生物学认识,经历了一个由肤浅到逐渐完善的过程。20世纪30年代,厌氧消化被概括地划分为产酸阶段和产甲烷阶段,即两阶段理论。70年代初Bryantlzgl等人对两阶段理论进行了修正,提出了厌氧消化的三阶段理论,突出了产氢产乙酸菌的地位和作用。与此同时,Zeikuslao等人提出了厌氧消化的四类群理论,反映了同型产乙酸菌的作用。该理论认为厌氧发酵过程可分为四个阶段,第一阶段(水解阶段):将不溶性大分子有机物分解为小分子水溶性的低脂肪酸;第二阶段(酸化阶段):发酵细菌将水溶性低脂肪酸转化为H2、CH3000H、CH3CH2OH等,酸化阶段料液pH值迅速下降;第三阶段(产氢产乙酸阶段):专性产氢产乙酸菌对还原性有机物的氧化作用,生成H2、HCO3-、CH3COOH。同型产乙酸细菌将H2、HCO3-转化为CH3COOH,此阶段由于大量有机酸的分解导致pH值上升;第四阶段(甲烷化阶段):产甲烷菌将乙酸转化为CH4和CO2,利用H2还原CO2成CH4,或利用其他细菌产生甲酸形成CH4。无论是三阶段理论,还是四类群理论,实质上都是对两阶段理论的补充和完善,较好地揭示了厌氧发酵过程中不同代谢菌群之间相互作用、相互影响、相互制约的动态平衡关系,阐明了复杂有机物厌氧消化的微生物过程。 2 厌氧消化影响因素 底物组成 研究发现不同底物组成,其可生化降解性大不相同(5%~90%)。Borja等研究了不同底物组成和浓度的有机固废的厌氧消化过程,认为在其他条件相同时沼气产量相差很大,甚至达到65%。这个结果与Jokela等的研究所得基本一致。另外,底物组成不同,在发酵过程中的营养需求与调控也不同。对于像以秸秆为主的底物,须补充N源的营养,以达到厌氧消化适宜的C/N比。国内外很多机构开展了生活垃圾、污泥及畜禽粪便联合厌氧消化产沼的研究。联合发酵可以在消化物料间建立起一种良性互补,从而提高产气量,而且仪器设备的共享在提高经济效益方面的作用也是非常明显的。Kayhanian评估了以城市固体垃圾生物可降解部分为底物的高固体厌氧消化示范试验。结果表明,美国典型B/F(可降解垃圾与总物料之比)的垃圾缺乏活跃而又稳定降解所需要的宏量或微量元素,若补充以富含营养的污泥和畜禽粪便,可以提高B/F,大大提高产气率并增加过程的稳定性。国内在这方面的研究仅限于实验室水平,未见相关工程应用的报道。 温度 有机固废厌氧消化一般在中温或高温下进行,中温的最佳温度为35℃左右,高温为55℃左右。Ghosh等利用厌氧消化处理垃圾衍生燃料(RDF),对比了单相式和两相式反应器的处理效果,发现在传统单相式反应器中高温(55℃)比常温(35℃)消化的甲烷产量仅提高7%;RDF粒径从降至在中温消化下对甲烷产量无明显影响,但当反应条件转变为高温消化时甲烷产量可提高14%。高温消化可以比中温消化有更短的固体停留时间和更小的反应器容积。然而高温消化所需热量多,运行也不稳定。最近有研究表明厌氧消化在65℃时水解活性可进一步提高。还有将超高温水解作为一个专门的反应器,对厌氧消化进行处理研究。 高温可以比中温产能多,但高温需要更多的能量,在实际情况中加热所需的能量往往与多产出的能量差不多。虽然沼气产量和生物反应动力学都表明高温消化更有优势,但理想的条件决定于底物类型和使用的系统情况。 pH值 产甲烷菌对pH值的要求非常严格,pH值的微小波动有可能导致微生物代谢活动的终止。在发酵初期由于产生大量有机酸,若控制不当容易造成局部酸化,延长发酵周期,进而破坏整个反应体系。研究发现pH值为~范围内,水分含量为90%~96%时产甲烷速率较高;pH值低于或高于时,产甲烷菌可能会停止活动。 一般说来酸化相对保持略偏酸性,产甲烷相需要略偏碱性,但没有一个绝对合适的量,只需系统能够保持稳定高效便是最佳状态。pH值是厌氧消化过程的重要监测指标和控制参数。 抑制 厌氧消化过程中抑制作用非常普遍,包括pH抑制、氢抑制、氨抑制、弱酸弱碱抑制、长链脂肪酸(VFA)抑制等。 许多学者都研究了厌氧消化中氨抑制的问题。当氨氮浓度从740mg/L至3 500mg/L时,葡萄糖降解速度急剧下降,可以认为氨积聚对糖酵解过程有一定的抑制作用。Sung等研究了以有机固废为底物的常温厌氧消化过程中氨氮浓度对甲烷产气量的影响,常温消化当总氨氮浓度(TAN)从依次升至、、、时,反应器内呈现慢性抑制的现象。TAN为或时,甲烷产量分别降低39%和64%。Fujishima等研究了常温下污泥含水率对厌氧消化的影响,发现污泥的含水率低于91%时甲烷产量减少,这主要由于系统中高氨含量对氢营养甲烷菌的抑制作用。 Salminen指出渗滤液回流与pH值调节相结合可以降低酸积累的抑制效应,加速消化降解速率。然而当系统中活性产酸菌和产甲烷菌数量较少时,回流渗滤液会引起VFA积聚。Clarkson和Xiao对废报纸进行厌氧消化的研究发现,水解反应是其中限制性步骤,高浓度的丙酸盐对其具有抑制作用。 搅拌 当消化底物为固态时,水解通常成为整个反应的限制性阶段。很多经典中强调了消化过程中应充分混和搅拌以促进反应器中酶和微生物的均匀分布。然而近年来有试验表明降低搅拌程度可以提高反应器的效率。Vavilin .常温消化下搅拌强度的,试验表明当有机负荷偏高时,搅拌强度加大会导致反应器运行失败,低强度搅拌是消化过程顺利完成的关键;当有机负荷偏低时,搅拌强度对反应无明显影响。由此Vavilin .提出搅拌阻碍反应器中甲烷区形成的假设,认为甲烷区的形成对抵抗酸化过程中产生的抑制起重要作用。在此基础上他提出了均质柱形反应器的二维分布式模型(2D distributed models),模型基于以下假设:在维持产甲烷菌繁殖代谢处于较优水平的前提下,反应器中甲烷区所占空间存在一个最小值。通过对消化过程的模拟,认为有机负荷高时,反应初始阶段甲烷区与产酸区在空间上分离是固废物转化为甲烷的关键因素,而初始阶段甲烷区中生物量的多少则是这些活性区保留的决定性因素。此时如果高强度搅拌,甲烷区由于VFA的抑制作用会逐渐萎缩直至消失。然而当有机负荷偏低时,大部分甲烷区均能幸存并逐步扩大到整个反应器。 Stroot等学者认为剧烈搅拌会破坏微生物絮团的结构,从而打乱了厌氧体系中有机体间的相互关系。一个连续运转的消化器在启动阶段应逐步增大有机负荷以避免运转失败。当产甲烷阶段是限制性反应时高强度搅拌并不合适,因为产甲烷菌在这种快速水解酸化的环境中很难适应,因此在启动阶段应采取适量搅拌。如果水解阶段为限制性反应,此时反应器内底物浓度较大,高强度搅拌对水解起促进作用。因此为达到有机物厌氧转化的最佳条件,应综合考虑搅拌所带来的积极和负面影响。 预处理 根据现有的研究发现,固体厌氧消化的速度较慢,对固体废物采用物理法、化学法、生物法等预处理可以提高甲烷产气量。Liu等人通过对消化底物进行240℃的蒸汽热处理5分钟,使甲烷产气率提高一倍,最终的甲烷产量增加40%。木质素和纤维素由于其本身结构,是公认的难降解物质,也是很多厌氧消化过程中的限制性因素。Clarkson等对废报纸进行厌氧消化研究,发现碱预处理可以显著提高废纸的可生物降解性,但延长浸泡时间或增大反应温度并不能提高转化率。 Hartmann等在传统的厌氧反应器前端设计了一个生物活性反应器,对厌氧消化进行预处理研究。该反应器用于68℃对底物进行超高温水解,这种反应器分离的设计是为了更大程度降解有机物为VFA,从而获得更高的产气量,同时超高温反应器可以有效去除氨的影响。结果表明VS去除率为78~89%,产气量640~790mL/g。超高温反应器中氨负荷降低7%。 对固态厌氧消化底物的物理和化学预处理研究较多,对生物预处理的研究则较少。Peter等从高温反应器中分离到能分解有机固体废物的嗜温微生物,用该微生物对污水污泥进行预处理,在1~2d内近40%的有机物被分解,而且与没有经过该预处理相比,厌氧消化过程中沼气产量提高50%;Ejlertsson研究表明,在消化开始阶段进行间歇曝气能有效去除易降解的固废,克服高浓度VFA带来的抑制;Mshandete等研究了纸浆厌氧发酵系统中,启动阶段进行9h堆肥预处理后甲烷产量提高26%;Katsura和Hasegawa进行了类似的预处理研究,对污泥进行微好氧热处理后甲烷产量提高50%。研究者认为高温好氧菌分泌的胞外酶比一般蛋白酶在溶解污泥方面更具活性。 3 厌氧消化工艺 厌氧消化处理固体废物,通过技术革新逐步形成了以湿式完全混合厌氧消化、厌氧干发酵、两相厌氧消化等为主的工艺形式。 湿式完全混合厌氧消化工艺(即湿式工艺)的最早也最为广泛。此工艺条件下固体浓度维持在15%以下,其液化、酸化和产气3个阶段在同一个反应器中进行,具有工艺过程简单、投资小、运行和管理方便的优点。这种工艺条件下浆液处于完全混合的状态,容易受到氨氮、盐分等物质的抑制,因此产气率较低。 厌氧干发酵又称高固体厌氧消化,在传统的厌氧消化工艺中固体含量通常较低,而高固体消化中固体含量可达到20%~35%。高固体厌氧消化主要优点是单位容积的产气量高、需水量少、单位容积处理量大、消化后的沼渣不需脱水即可作为肥料或土壤调节剂。随着固体浓度的加大,干发酵工艺中需设计抗酸抗腐蚀性强的反应器,同时还得解决干发酵系统中输送流体粘度大以及高固体浓度带来的抑制问题。两相厌氧消化工艺即创造两个不同的生物和营养环境条件,如温度和pH等。Ghosh最早提出优化各个阶段的反应条件可以提高整体反应效率,增加沼气产量,从而提出了两相厌氧消化。动力学控制是两相系统促进相分离最常用的手段,根据酸化菌和产甲烷菌生长速率的差异来进行相分离。还有一些技术可促进厌氧系统的相分离,如滤床在处理不溶性的有机物时可用来达到相分离。渗析、膜分离和离子交换树脂等也可用于相分离。 大多数观点认为,采用相分离技术创造有利于发酵细菌的生态环境,避免有机酸的大量积累,会提高系统的处理能力。Ghosh等利用厌氧消化处理垃圾衍生燃料(RDF),对比了单相式和两相式反应器的处理效果,发现两相消化比传统单相式反应器,甲烷产量提高20%左右。Goel等人对茶叶渣进行两相厌氧消化研究,发现每去除1kgCOD,平均产气量为,COD去除率93%,甲烷含量73%。 两相厌氧工艺的主要优点不仅是反应效率的提高而且增加了系统的稳定性,加强了对进料的缓冲能力。许多在湿式系统中生物降解不稳定的物质在两相系统中的稳定性很好。虽然两相工艺有诸多的优点,但由于过于复杂的设计和运行维护,实际应用中选择的并不多。目前为止,两相消化在应用上并没有表现出明显的优越性,投资和维护是其主要的限制性因素。4 结语 Edelmann利用生命周期(LCA)认为,厌氧消化是最适宜的有机固废处理方法。有机固废的厌氧消化技术已引起国内外的广泛关注,它们在消纳大量有机废物的同时,可获得高质量的堆肥产品和沼气,实现生物质能的多层次循环利用。 我国目前在有机垃圾厌氧消化工程应用方面的研究很少,厌氧消化的研究主要集中在水处理方面。各种厌氧发酵工艺实际应用中所存在的最大问题是规模化运行的自动化程度较低,技术装备差。因此,对厌氧消化的最佳生物转化条件、生态微环境以及设计完善的过程控制系统等方面,还需要进一步深入研究,以达到最佳的处理效果。 文献1 Borja R,Rincon B,Raposo F et al.Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste[J].Biochemical Engineering Journal,2003(15)2 Ghosh, S,Henry ,Sajjad A et al.Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion[J].Water Science and Technology,2000(3) 3 Hinrich Hartmann,Birgitte K. Ahing.A novel process configuration for anaerobic digestion of thermophilic post-treatment[J].Biotechnology and bioengineering,2005(7)4 Peter F. Pind,Irini Angelidaki,Birgitte . Dynamics of the Anaerobic Process: Effects of Volatile Fatty Acids[J].Biotechnology and Bioengineering,2003(7)5 Ejlertsson J,Karlsson A,Lagerkvist A et al.Effect of co-disposal of wastes containing organic pollutants with municipal solid waste-a landfill simulation reactor study[J].Adv Environ,2003(7)
文献综述的范文
在学习、工作生活中,大家都经常接触到论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。写起论文来就毫无头绪?下面是我为大家收集的文献综述的范文,仅供参考,欢迎大家阅读。
本科毕业论文(设计)文献综述范例
论文题目: 温室环境测控系统及其发展趋势
摘要 :本文阐述了温室环境测控系统在国内外的发展情况,包括从温室诞生起,美国、日本、荷兰等温室测控技术发展比较先进的国家在各自领域内的研究成果,以及国内引进温室技术后,各个高校及专业人员就自己擅长的方面进行探索并取得一定的研究成果。其次浅谈了温室测控系统的发展前沿,即该领域的先进技术,如无线电监控系统、GPRS技术、远程温室大棚控制系统等。最后具体讲述了温室测控中主要的影响因素,包括温度、湿度、光照、CO2浓度,以及当下比较适宜的处理办法。
关键词 : 温室环境测控;无线电监控;远程监控
Greenhouse environment controling systems and its
development
Abstract : This paper said the development of the greenhouse environment control system at home and aborad , since the birth of greenhouse , United States , Japan , the Netherlands and other greenhouse monitoring and control technology more advanced countries in their respective areas of research , and after the introduction of greenhouse technology as well as domestic , various universities and professionals to explore their own good and have made certain aspects of the research results . Second ,on the forefront of the development of the greenhouse control system , such as radio control system , GPRS technology , remote control system of greenhouse and so on . Finally , Specific about the main factors of greenhouse monitoring and control , Including temperature, humidity , light , CO2 concentration and the more appropriate approach at present Keyword: greenhouse monitoring and control technology ; radio control system ; remote control system of greenhouse.
引言
目前,我国农业正处于从传统农业向以优质、高效、高产为目标的现代化农业转化新阶段。而温室作为现代化设施农业的重要产物,在国内多数地区得到了广泛应用。温室可以模拟成一个由人工智能监测的半封闭生态系统,它可以避开外界种种不利因素的影响,人为控[1]制或创造适宜农作物生长的气候环境。由于温室中各种环境因素是可以人为控制的,因此控制技术直接决定着温室中农作物的产量和质量。
温室测控系统一般包括三个模块:环境信息采集模块、数据处理模块和执行模块。在目前的测控系统中,环境因子的采集主要包括温度、湿度、CO2浓度、光照强度、土壤湿度等。
1温室环境测控在国内外的发展
自二十世纪七十年代温室诞生以来,各国对测控技术的研究越来越多,也越来越深入,逐步向着网络化、智能化、综合化的方向发展[2]
国外温室技术发展概况
美国是最早发明计算机的国家,也是将计算机应用于温室控制和管理最早、最多的国家之一。美国开发的温室计算机控制与管理系统可以根据温室作物的特点和要求,对温室内光照、温度、水、气、化肥等诸多因子进行自动调控,还可利用温差管理技术实现对花卉、果蔬等产品的开花和成熟期进行调节及控制。
在日本,作为设施农业主要内容的设施园艺建设相当发达,比如塑料温室和其它人工栽培设施达到普遍应用,设施栽培面积位居世界前列,蔬菜、花卉、水果等普遍实行设施温室生产,并针对种苗生产设施的高温、多湿等不良环境进行了若干设施项目的研究[3],主要有设施内播种装置、苗接触刺激装置、苗灌水装置和遮光装置的开闭装置、缺苗不良苗的检测及去除和补栽装置、CO2施肥装置等方面的自动化研究[4]。
2002年,英国伦敦大学农学院利用计算机遥控技术,可以观测50km以外温室内的温度、湿度等环境状况并远程控制。另外针对CO2浓度对作物的影响这一点,温室中通常安装通风机,搅动空气使温室中的CO2浓度一致[5]。
荷兰园艺温室发展较早,由于地处高纬度地区,日照短,全年平均气温较低等不利于作物生长的气候因素,因此集中较大力量发展经济价值高的鲜花和蔬菜,大规模地发展玻璃温室和配套的工程设施并且全部采用计算机控制,大大提高了作物的产出及品质要求。
现今随着科技的不断发展,国外温室业正致力于高科技的广泛应用。遥测技术、网络技术、控制局域网已逐渐应用于温室的管理与控制中,近几年各国温度控制技术提出建立温室行业标准并朝着网络化,大规模,无人化的方向发展[6]。
国内温室技术发展概况
国内的计算机应用开始于70年代中期,当时主要用于数据的统计分析和计算。自70年代末起,我国陆续从美国、日本、荷兰等国引进了许多先进的现代化温室技术,在借鉴及学习发达国家高科技温室技术的基础上,我国农业科研工作人员进行了温室内部温度、湿度、光照、CO2浓度等环境因子控制技术的综合研究,在边学习边发展的道路上我国温室技术也有了长足的进步。
早期温室技术引进是1987年中国农业科学院引进了FELIXC 512系统,并建立了全国农业系统的第一个计算机应用研究机构[7]。到了90年代初期,计算机开始用于温室的管理和控制领域。
2000年,金钰研究了工业控制机IPC在自动化温室控制中的应用[8]。该研究是以工业控制机为核心采集环境信息,控制外围设施执行控制。实现了温室的封闭环境控制,但该系统布线复杂,维护困难且成本过高。
2005年,杜辉等研究了基于蓝牙技术的分布式温室监控系统[9]。该系统将蓝牙技术和现场总线技术相结合运用于温室群的监控,提高了系统的可靠性、降低了数据传输过程中干扰。但由于蓝牙技术本身的不成熟,与其他技术相结合以后会导致系统的紊乱,难以调控,顾该系统的实际应用仍需要深入研究。
2007年,唐娟等研究了基于新型AVR单片机的温室测控系统[10]。该系统把个体生产和规模化生产相结合,在单个温室大棚生产实现智能自动化的基础上实现连栋温室大棚的规模化生产。
2008年,周茂雷,郭康权研究出了基于ARM7微处理器的温室控制器系统[11]。该系统能通过AD算法实现温室各路模拟量、开关量实时动态采集,将采集到的数据经处理后定时保存并送出控制量。
2 温室技术新型发展
现代化农业设施技术得到了极大的发展,利用不同的先进科技创造了利于作物生长的温室环境,下面讲述了五种新型温室技术。
无线电监控系统
随着生产规模的不断扩大,大棚数量的增多,有线监测系统布线复杂、维护困难、不能任意增加节点等缺点就暴露出来了. 随着电子技术的发展,出现了一体化的无线收发芯片nRF905,该芯片体积小巧,外围只需添加少量几元件即可工作,而且编程简单,可实现信息的无线传输, 以上位机为信息处理终端,构成了温室大棚环境参数监控系统, 该系统具有无需布线、可以任意增减采集点、结构简单、功耗低及组网方便等特点,因而具有较高的实用价值[12]
GPRS技术的应用
GPRS (General Packet Radio Service)是通用分组无线业务的简称,是一种基于GSM (Global System for Mobile Communications)系统的无线分组交换技术。同一无线信道又可以由多个用户共享,只有当某个用户需要发送或接收数据的时候才会占用信道资源,从而有效地利用了信道资源。监控中心服务器通过GPRS 可以在移动状态下使用各种采集到的信息数据, 在移动通信服务商提供的GPRS业务平台上构建温室大棚环境监控信息数据传输系统, 实现智能化温室控制信息采集点的无线数据传输,监控系统同时可以实现资料、指令的.反向传输,以达到远程控制的目[13]。的温室大棚环境监控中心也可以通过服务器来浏览各个温室大棚的作物生长状况。
基于CAN和Profibus总线的温室分布式监控系统
CAN(controller area network)总线是一种分布式实时控制系统的串行通信局域网[14-15],其信号传输采用短帧结构,具有传输时间短、受干扰的概率低、实时性强、性能好和可靠性高等优点,广泛应用于各种控制系统中的检测和执行机构之间的数据通信。
Profibus总线的温湿度分布式测控系统也和CAN总线的功能差不多。在现有的各种现场总线中, Profi2bus 总线占有很大的市场份额, 并提供了DP、PA3和FMS三种协议类型。
虚拟仪器的应用
温室大棚测量系统的发展经过了模拟仪器、分立元件仪器、数字化仪器和智能化仪器,到现在发展到了虚拟仪器。虚拟仪器以计算机为核心组成的虚拟仪器平台,可以通过不同的虚拟仪器软件实现多种测试功能,能由虚拟仪器代替部分传统的仪器硬件,并利用虚拟仪器强大的数据采集和数据分析功能,进行各种信息的处理,然后将结果送出显示或控制调节机构,调节大棚的环境参数[16]。
远程温室大棚控制系统
为实现农民对大棚的简捷控制,实现农民增产增收,远程温室大棚控制系统显然是一项值得研究和推广的工程。该系统实时要求很高, 传输距离较远, 对稳定性以及抗干扰性的要求也很高, CC2Link造价低廉, 能满足现场环境的通讯要求而成为主要的新型现场通讯方式,另外以太网实时、高速且传输距离较远, 而成为主流的远程通讯方式。两者相结合便实现了温室大棚远程控制网[17]。
3 影响作物生长的各项因素及处理办法
作物的生长发育,一方面取决于作物本身的遗传特性,另一方面取决于外界环境条件。在生产上,则要通过优良的栽培技术及创造适宜的环境条件来控制生长和发育。
影响作物生长发育的主要环境条件包括:温度(空气温度及土壤温度)、光照(光的强度和光周期)、水分(空气湿度和土壤湿度)、土壤(土壤肥力及土壤溶液的反应)、空气(大气及土壤中空气的特性,CO2的含量,有毒气体的含量)、生物条件(土壤微生物及病虫害)等。下面就温度、湿度、光照、CO2浓度这四方面进行具体的论述。
温度
作物的生长发育环境中以温度最为敏感,也是最重要的。自然环境下,温度在时间上随
四级变化而周期变化,在空间上随纬度和海拔的升高而降低。
另外在室内的话,由于作物的茂密生长会使得温度的空间变得比较复杂,实际上温度的空间分布受室外气候因子、室内调控方式、植物群体结构的综合影响,空气温度不论在水平方向还是在垂直方向往往都不均匀。
处理办法:
目前温室的温度调控主要包括增温、保温、降温[18]。加温有热风采暖系统、热水采暖系统、土壤加温三种形式;保温包括减少贯流放热和通风换气量、增大保温比、增大地表热流量;降温最简单的途径是通风.
湿度
适宜的空气湿度和土壤湿度是温室内作物健康生长的重要条件。根据研究发现,除了阴雨天以外,室内午后过低的空气湿度会导致作物发生光合作用的午休现象。
一般情况下,作物适宜的相对湿度是60%~80%。所以温室内空气相对湿度的大小直接影响作物的光合作用,影响作物生产的质量;另外,空气湿度过大,作物植株也易于生病。
土壤湿度对植物的影响也很大,若温室内排水不良,灌水不当,土壤渗水性不好,造成土壤水分过剩,使土壤中的氧气减少,植物根部呼吸的水分减少,从而影响植物的水分代谢,阻滞植物的生长或者发生根部腐烂的情况[19]。
处理办法:
除湿的方法有通风换气、加温除湿、覆盖地膜、使用除湿机、除湿型热交换通风装置。 加湿的方法包括喷雾加湿、湿帘加湿、温室内顶部安装喷雾系统[20]。这几种方法除了有加湿功能还可以达到降温的功效.
光照强度
光照是作物生长发育的关键条件之一。没有光照,就谈不上植物的生长,光照不足,势必影响植物的生长发育。
光照的强度直接影响到作物光合作用的强度。与室外相比较,室内光明显的差异表现在数量减少,光质改变及光分布不均匀等三个方面,从而形成独特的温室光环境[21]。
处理办法:人工调节大棚外部设施的方法来改变温室内的光照强度
304 浏览 4 回答
318 浏览 5 回答
85 浏览 8 回答
275 浏览 4 回答
291 浏览 7 回答
91 浏览 5 回答
320 浏览 4 回答
155 浏览 4 回答
227 浏览 4 回答
313 浏览 2 回答
310 浏览 7 回答
312 浏览 4 回答
258 浏览 4 回答
252 浏览 5 回答
353 浏览 4 回答