关于集合运算的应用收稿日期:2008-01-08作者简介:邓凤茹(1969-),讲师,河北廊坊人,从事基础教育教学工作。1简介集合论的运算集合论是最近发现的数学理论,在1871年集合论的创始人德国大数学家康.托尔给出集合的第一定义,使“集合”成为数学基本概念之一,它也是整个数学大厦的基础,虽然集合论很“年轻”,但是它能够论证数学各个分支的统一性,例如代数式和几何式效果是相等的。下面简单介绍集合的概念和运算。集合的概念集合是指具有某种特定性质的事物的总体。组成这个集合的事物称为集合的元素;根据集合元素的个数集合分为有限集和无限集,同一性质的集合可以定义运算,集合的运算有三种:并、交、差。集合的运算设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集,简称并(或和),记作A∪B,即A∪B={x|x∈A或x∈B}由所有既属于A又属于B的元素组成的集合,称为A与B的交集,简称交(或积),记作A∩B,即A∩B={x|x∈A且x∈B}由所有既属于A而不属于B的元素组成的集合,称为A与B的差集,简称差,记作A-B,即A-B={x|x∈A且x|B}以上定义可推广到无限多个集合的运算2在概率统计学中的应用1)概率的定义设(Ω,F)是可测空间,对每一个集合A∈F,有一实数与之对应,记为P(A),如果它满足下面三个条件:(1)对每一个集合A∈F,有0≤P(A)≤1;(2)对必然事件Ω,有P(Ω)=1;(3)对任意集合Ai∈F(i=1,2,…n),Ai∩Aj=Φ(i≠j),恒有P(∪ni=1A i)=6ni=1p(A i)(1)则称实值函数P为(Ω,F)上的概率,P(A)就称为事件A的概率2)当A i∩A j≠Φ(i≠j),(i,j=1,2…,n)时,公式一变成一般式即P(∪ni=1A i)=6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)(2)由De Morgan定理(对偶律或摩根律)可得下述概率公式:P(∩ni=1A i)=P(∪ni=1A i)=P(Ω-∪ni=1A i)即P(∩ni=1A i)=1-[6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)](3)注意:三个公式的适用条件当n=2时,为最简单的形式即P(A∪B)=P(A)+P(B)-P(A∩B)当A∩B=Φ时,P(A∪B)=P(A)+P(B)(可加性)3在组合数学中的应用1)集合中元素个数:设A为有限集合,A中元素个数为r,则称r为A的元素个数,记作:|A|=r2)推导一般公式|A∪B|=|A|+|B|-|A∩B|(当A∩B=Φ时,|A∪B|=|A|+|B|)|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|推广到一般形式:∪ni=1A i=6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A2∩…∩An|(4)由De Morgan定理(对偶律或摩根律)可得下述公式∩ni=1A i=∪ni=1A i=I-∪ni=1A i(I为全集,|I|=m)即∩ni=1A i=m-6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A 2∩…∩A n|(5)公式(4)与公式(5)就是容斥原理3)推广容斥原理(1)|A∩B|=|A-(A∩B)|=|A|-|A∩B|同理|B∩A|=|B-(A∩B)|=|B|-|A∩B|即|A∩B|+|B∩A|=|A|+|B|-2|A∩B|(2)|A∩B∩C|=|A∩(B∪C)|=|A∩[I-(B∩C)]|=|A-[(A∩B)U(A∩C)]|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|同理可得:|A∩B∩C|=|B|-(|A∩B|+|B∩C|)+|A∩B∩C||A∩B∩C|=|C|-(|A∩C|+|B∩C|)+|A∩B∩C|即|A∩B∩C|+|A∩B∩C|+|A∩B∩C|=|A|+|B|+|C|-2(|A∩C|+|B∩C|+|B∩C|)+3|A∩B∩C|(3)推广到一般情况|A 1∩A 2∩A 3∩…∩A n|+|A 1∩A 2∩A 3∩…∩A n|+…|A1∩A2∩A3∩…∩An|=6ni=1|A i|-26ni=16j>i|A i∩A j|+3 6ni=16j>i6k>j|A i∩A j∩A k|-…+n|A 1∩A 2∩…∩A n|令α(m)=6|Ai1∩Ai2∩…∩Aim|,β(1)=6|A i1∩Ai2∩…∩Ain|则上式可表示为:β(1)=C11α(1)-C11+1α(2)+C21+2α(3)-…+C1nα(n)同理可推广:β(m)=Cmmα(m)-Cmm+1α(m+1)+Cmm+2α(m+2)-…+(-1)n-m Cmnα(n)(6)公式(6)为广义的容斥原理(证明略)4应用案例一个学校只有3门课程:数学,物理,化学。已知修这三门课的学生分别有170,130,120人;同时修数学、物理两门课的学生有45人;同时修数学、化学两门课的学生有20人;同时修物理、化学两门课的学生有22人;同时修三门课的学生有3人。问在该校众人抽一名,问他是只参加数学课程的概率是多少?解:设A为修数学课的学生集合;B为修数学课的学生集合;C为修数学课的学生集合;则有:|A|=170;|B|=130;|C|=120;|A∩B|=45;|A∩C|=20;|C∩B|=22|A∩B∩C|=3学校共有学生人数:|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|=170+130+120-(45+20+22)+3=336(人)只参加数学课程的人数:|A∩B∩C|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|=170-(45+20)+3=108则在该校众人抽一名,只参加数学课程的概率为:P(A∩B∩C)=|A∩B∩C||A∪B∪C|=108336≈(下转第39页)(上接第32页)5结语通过对集合运算在《概率统计》与《组合数学》两门课程中应用的讨论,我们可以归纳为函数式的应用问题,如果把求概率和求集合中元素的个数抽象成为函数,把对应法则统一看作f,x,y为变量,“+”表示“加”或“或”的含义“;3”表示“乘”或“与”,“x”表示“差”或“非”,则该函数满足下列性质:(1)f(x+y)=f(x)+f(y)-f(x y)(2)将上式推广到有限个元素中去为:f(6ni=1x i)=6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)(3)由De Morgan定理可知下述等式(A常数)f(6ni=1x i)=A-[6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)]注“:3”号可以省略不写,“∏”表示连乘号以上等式还可以推广到无穷多个变量的函数等式中去,并且该函数也可以应用于其它领域当中。参考文献:[1]卢开澄.组合数学[M].北京:清华大学出版社,2003.[2]梁之舜.概率论及数理统计[M].北京:高等教育出版社,2005.[3]同济大学应用数学系.高等数学[M].北京:高等教育出版社,2005.
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》 摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。 关键词:人性;理性;社会性;自然性;集合论思想 一、引言 在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。 有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。 现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。 二、理论分析 假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。 结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。 如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。 那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。 有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。 属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1] 属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。 分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。 但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。 三、结果分析 1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。 比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。 2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。 在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。 3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。 四、结束语 我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。 参考文献: [1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990. 康托尔的集合论论文篇2:《集合论与第三次数学危机》 数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。 一、集合论的诞生 一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。 二、集合论成为现代数学大厦的基础 康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。 集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊! 三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机 1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。 罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。 四、消除悖论,化解危机 罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。 在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。 解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。 五、危机的启示 从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。 矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。” 参考文献: 1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社 2.胡作玄,《第三次数学危机》 康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》 【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。 【关键词】模糊集合论;隐喻;文学创作 模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。 1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。 模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。 以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。 隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。 【参考文献】 [1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7). [2] Set. Information and (8). [3]安军.隐喻的逻辑特征[J].哲学研究,2007(2). [4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5). [5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1). 猜你喜欢: 1. 高中数学论文题目大全 2. 关于数学文化的论文范文 3. 数学与哲学的论文 4. 人工智能逻辑推理论文 5. 数学学术论文范文大全 6. 数学论文离散数学
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
171 浏览 3 回答
245 浏览 2 回答
294 浏览 8 回答
129 浏览 2 回答
174 浏览 4 回答
345 浏览 7 回答
347 浏览 5 回答
212 浏览 5 回答
141 浏览 8 回答
98 浏览 5 回答
264 浏览 2 回答
85 浏览 2 回答
317 浏览 2 回答
193 浏览 4 回答
170 浏览 3 回答