首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数学集合论文

发布时间:

数学集合论文

关于集合运算的应用收稿日期:2008-01-08作者简介:邓凤茹(1969-),讲师,河北廊坊人,从事基础教育教学工作。1简介集合论的运算集合论是最近发现的数学理论,在1871年集合论的创始人德国大数学家康.托尔给出集合的第一定义,使“集合”成为数学基本概念之一,它也是整个数学大厦的基础,虽然集合论很“年轻”,但是它能够论证数学各个分支的统一性,例如代数式和几何式效果是相等的。下面简单介绍集合的概念和运算。集合的概念集合是指具有某种特定性质的事物的总体。组成这个集合的事物称为集合的元素;根据集合元素的个数集合分为有限集和无限集,同一性质的集合可以定义运算,集合的运算有三种:并、交、差。集合的运算设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集,简称并(或和),记作A∪B,即A∪B={x|x∈A或x∈B}由所有既属于A又属于B的元素组成的集合,称为A与B的交集,简称交(或积),记作A∩B,即A∩B={x|x∈A且x∈B}由所有既属于A而不属于B的元素组成的集合,称为A与B的差集,简称差,记作A-B,即A-B={x|x∈A且x|B}以上定义可推广到无限多个集合的运算2在概率统计学中的应用1)概率的定义设(Ω,F)是可测空间,对每一个集合A∈F,有一实数与之对应,记为P(A),如果它满足下面三个条件:(1)对每一个集合A∈F,有0≤P(A)≤1;(2)对必然事件Ω,有P(Ω)=1;(3)对任意集合Ai∈F(i=1,2,…n),Ai∩Aj=Φ(i≠j),恒有P(∪ni=1A i)=6ni=1p(A i)(1)则称实值函数P为(Ω,F)上的概率,P(A)就称为事件A的概率2)当A i∩A j≠Φ(i≠j),(i,j=1,2…,n)时,公式一变成一般式即P(∪ni=1A i)=6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)(2)由De Morgan定理(对偶律或摩根律)可得下述概率公式:P(∩ni=1A i)=P(∪ni=1A i)=P(Ω-∪ni=1A i)即P(∩ni=1A i)=1-[6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)](3)注意:三个公式的适用条件当n=2时,为最简单的形式即P(A∪B)=P(A)+P(B)-P(A∩B)当A∩B=Φ时,P(A∪B)=P(A)+P(B)(可加性)3在组合数学中的应用1)集合中元素个数:设A为有限集合,A中元素个数为r,则称r为A的元素个数,记作:|A|=r2)推导一般公式|A∪B|=|A|+|B|-|A∩B|(当A∩B=Φ时,|A∪B|=|A|+|B|)|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|推广到一般形式:∪ni=1A i=6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A2∩…∩An|(4)由De Morgan定理(对偶律或摩根律)可得下述公式∩ni=1A i=∪ni=1A i=I-∪ni=1A i(I为全集,|I|=m)即∩ni=1A i=m-6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A 2∩…∩A n|(5)公式(4)与公式(5)就是容斥原理3)推广容斥原理(1)|A∩B|=|A-(A∩B)|=|A|-|A∩B|同理|B∩A|=|B-(A∩B)|=|B|-|A∩B|即|A∩B|+|B∩A|=|A|+|B|-2|A∩B|(2)|A∩B∩C|=|A∩(B∪C)|=|A∩[I-(B∩C)]|=|A-[(A∩B)U(A∩C)]|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|同理可得:|A∩B∩C|=|B|-(|A∩B|+|B∩C|)+|A∩B∩C||A∩B∩C|=|C|-(|A∩C|+|B∩C|)+|A∩B∩C|即|A∩B∩C|+|A∩B∩C|+|A∩B∩C|=|A|+|B|+|C|-2(|A∩C|+|B∩C|+|B∩C|)+3|A∩B∩C|(3)推广到一般情况|A 1∩A 2∩A 3∩…∩A n|+|A 1∩A 2∩A 3∩…∩A n|+…|A1∩A2∩A3∩…∩An|=6ni=1|A i|-26ni=16j>i|A i∩A j|+3 6ni=16j>i6k>j|A i∩A j∩A k|-…+n|A 1∩A 2∩…∩A n|令α(m)=6|Ai1∩Ai2∩…∩Aim|,β(1)=6|A i1∩Ai2∩…∩Ain|则上式可表示为:β(1)=C11α(1)-C11+1α(2)+C21+2α(3)-…+C1nα(n)同理可推广:β(m)=Cmmα(m)-Cmm+1α(m+1)+Cmm+2α(m+2)-…+(-1)n-m Cmnα(n)(6)公式(6)为广义的容斥原理(证明略)4应用案例一个学校只有3门课程:数学,物理,化学。已知修这三门课的学生分别有170,130,120人;同时修数学、物理两门课的学生有45人;同时修数学、化学两门课的学生有20人;同时修物理、化学两门课的学生有22人;同时修三门课的学生有3人。问在该校众人抽一名,问他是只参加数学课程的概率是多少?解:设A为修数学课的学生集合;B为修数学课的学生集合;C为修数学课的学生集合;则有:|A|=170;|B|=130;|C|=120;|A∩B|=45;|A∩C|=20;|C∩B|=22|A∩B∩C|=3学校共有学生人数:|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|=170+130+120-(45+20+22)+3=336(人)只参加数学课程的人数:|A∩B∩C|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|=170-(45+20)+3=108则在该校众人抽一名,只参加数学课程的概率为:P(A∩B∩C)=|A∩B∩C||A∪B∪C|=108336≈(下转第39页)(上接第32页)5结语通过对集合运算在《概率统计》与《组合数学》两门课程中应用的讨论,我们可以归纳为函数式的应用问题,如果把求概率和求集合中元素的个数抽象成为函数,把对应法则统一看作f,x,y为变量,“+”表示“加”或“或”的含义“;3”表示“乘”或“与”,“x”表示“差”或“非”,则该函数满足下列性质:(1)f(x+y)=f(x)+f(y)-f(x y)(2)将上式推广到有限个元素中去为:f(6ni=1x i)=6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)(3)由De Morgan定理可知下述等式(A常数)f(6ni=1x i)=A-[6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)]注“:3”号可以省略不写,“∏”表示连乘号以上等式还可以推广到无穷多个变量的函数等式中去,并且该函数也可以应用于其它领域当中。参考文献:[1]卢开澄.组合数学[M].北京:清华大学出版社,2003.[2]梁之舜.概率论及数理统计[M].北京:高等教育出版社,2005.[3]同济大学应用数学系.高等数学[M].北京:高等教育出版社,2005.

康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》 摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。 关键词:人性;理性;社会性;自然性;集合论思想 一、引言 在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。 有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。 现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。 二、理论分析 假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。 结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。 如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。 那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。 有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。 属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1] 属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。 分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。 但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。 三、结果分析 1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。 比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。 2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。 在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。 3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。 四、结束语 我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。 参考文献: [1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990. 康托尔的集合论论文篇2:《集合论与第三次数学危机》 数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。 一、集合论的诞生 一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。 二、集合论成为现代数学大厦的基础 康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。 集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊! 三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机 1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。 罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。 四、消除悖论,化解危机 罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。 在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。 解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。 五、危机的启示 从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。 矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。” 参考文献: 1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社 2.胡作玄,《第三次数学危机》 康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》 【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。 【关键词】模糊集合论;隐喻;文学创作 模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。 1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。 模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。 以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。 隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。 【参考文献】 [1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7). [2] Set. Information and (8). [3]安军.隐喻的逻辑特征[J].哲学研究,2007(2). [4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5). [5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1). 猜你喜欢: 1. 高中数学论文题目大全 2. 关于数学文化的论文范文 3. 数学与哲学的论文 4. 人工智能逻辑推理论文 5. 数学学术论文范文大全 6. 数学论文离散数学

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

高一数学论文集合

数学在当今各学科中的用途急剧增加,重要的原因之一是数学能简明地表达和交流思想。下文是我为大家整理的关于高一数学论文的范文,欢迎大家阅读参考!

浅谈高中学生数学课堂笔记现状的调查与研究

高中学生已经普遍认识到,做好数学课堂笔记对学好数学的重要性. 学生们在实际的数学课堂笔记记录过程中采用了很多不同的笔记策略,在笔记使用的过程中也存在较大的区别. 国内外对笔记方面的研究多集中在笔记的功能方面和笔记的生成技术,对课堂笔记策略方面的研究涉及极少. 为研究高中数学课堂笔记记录和使用的有效策略,笔者于2015年4月对本校的高一80名学生进行课堂笔记的问卷调查和部分学生的访谈调查,现报道如下.

x研究对象与方法

1. 对象

2015年4月通过抽样的方法,选取高一80名学生作为研究对象,其中男生51人,女生49人. 80名学生分成三个层次,多次考试成绩基本稳定在班级前十名的作为学优生一层;多次考试成绩基本稳定在班级后十名作为学困生一层;其余作为中间一层.

2. 方法

研究主要采用问卷调查法和访谈调查法.问卷分为两个部分,第一部分包括课堂笔记的记录习惯和对课堂笔记重要性的认知;第二部分是不同课型学生课堂笔记的记录策略和课后笔记使用情况.发放问卷80份,收回有效问卷71份,其中男生35份,女生36份. 结合问卷调查结果,对其中的13名学生进行进一步的访谈调查.

3. 资料统计分析

采用SPSS19系统软件分析,对不同数学程度的学生进行各项的差异性比较.

问卷调查结果

1. 女学生更需要数学学习方法和策略上的指导

学优生中,男生比例占远高于女生的;反之,学困生中女生占,存在显著差异. 说明有更多比例女生在数学的学习过程中,学习方法和策略存在不足,需要教师对其在数学学习上的指导.

2. 数学概念课上,学优生和学困生在课堂笔记策略和课后笔记使用上没有显著区别

概念课上,学生的笔记策略基本都是采用在书中标注的方法,50%左右的学生会在课后再理解消化数学概念,这一比例学优生略高于学困生.

3. 数学命题课上,学优生更注重课后对所学的公式、定理进行再次推导

学优生与学困生在数学命题课上的笔记策略没有显著区别,但学优生更重视公式、定理的推导过程.在课后的笔记使用上,有更多比例的学优生课后会对所学的公式或定理进行再次推导.

4. 数学例题课上,学优生与学困生的笔记策略存在显著差异

学困生在数学例题课上,有较大比例的学生习惯于把上课老师写的全部都记下来,基本没有自己的选择和取舍;而学优生基本都是有选择地进行记录,特别是重点记录了老师总结的方法和知识.

从结果可以看出,学优生在课内更重视听讲与练习,有选择性地记录数学课堂上的内容. 而学困生在数学课堂笔记的记录过程中,缺少自主的选择,注意力主要集中在笔记的记录过程,影响了听课的效率.

5. 解题过程中,学困生更依赖数学课堂笔记

有学困生,在做数学作业过程中会经常翻看课堂笔记,这一比例要远高于学优生的20%,存在显著差异.说明学困生在做作业时非常依赖课堂笔记,课堂的有效掌握率低,若碰到笔记中没有的题目类型,学困生就很难自主解决.

6. 在复习使用课堂笔记时,学优生和学困生使用笔记的方式是不同的

大部分学困生习惯于把笔记内容进行阅读式的复习使用;而学优生,会根据自己的实际情况,对笔记中的内容进行有选择性的复习.

访谈调查结果

为了进一步研究学优生与学困生在数学课堂笔记的记录策略和使用情况的具体差异,笔者对部分学生进行访谈调查,访谈调查的结果如下.

1. 学优生与学困生对数学概念的重视程度不一样

学优生不仅在课堂内对概念的听讲较为重视,课后都会对新接触的概念进行再理解;学困生课后基本不再关注数学概念,认为数学概念对解题没有帮助.

2. 学优生与学困生选择数学命题的记忆方式不同

学优生为了达到有效理解和记忆数学公式和定理的目的,经常性地在课后把公式和定理进行重新推导,关注数学命题的前因后果;而程度差的学生,只关注公式和定理本身,课后解题过程中习惯于频繁地翻阅书本中的定理和公式,记忆效果较差,遗忘率较高.

3. 学优生在数学例题课上的笔记策略是有选择性的记录

学优生在数学例题课上,选择的笔记策略是先自己做题,对自己能够顺利解决的问题不做笔记;对解题方法比较新颖的或没有理解透彻的,自己解决比较困难的,会选择做笔记,在课后会对课堂上选择性记录的笔记进行再理解,并重新对笔记中的例题重新做一遍.

在数学例题课上,绝大部分学困生选择把课堂内所有例题的题目和解答过程都记录下来;也存在少部分学生选择自己能理解的进行记录;也存在极少部分男生基本没有课堂笔记.

4. 学优生与学困生课后对作业、试题讲评课笔记的使用上存在不同

学优生与学困生在作业、试题讲评课上的笔记策略没有显著差异. 学优生当天在课后对错题会选择重新做一遍,并整理错题,有选择的记录到错题本中.复习时特别关注错误的原因和正确的解题方法,对具体解题过程关注较少. 学困生,课后极少关注错题,基本没有重新做一做错题的习惯,对课堂笔记的利用不足.

讨论

1. 重视对数学概念、公式、定理的理解是学好数学的基础

“概念理解”、“技能习得”、“问题解决”是数学教学的三大基本任务,同样是学生学习数学的基本任务,理解数学概念是学好数学的起点. 学生只有正真理解了数学概念,才能提高数学能力,理解数学思想,掌握数学方法.

2. 有选择性的记录笔记是数学课堂笔记的有效策略之一

数学课堂笔记是一把双刃剑,好的课堂笔记策略能有效提高数学能力,不好的课堂笔记策略反而会影响数学的学习. 缺少自主选择的笔记策略往往是抄录教师的板书,学生的注意力主要集中在笔记的抄录过程中,思维处于停滞状态,影响对数学基本知识的理解、基本技能的掌握和数学思维能力的培养,降低了课堂效率.

数学课堂笔记不应成为数学课堂的简单重复,要利用课堂笔记促进自身数学能力的提高,笔记内容就必须要有更高的起点,包括方法知识的提炼、内容的概括和困难问题的解决等.

3. 合理利用笔记,是提高数学能力的有效途径

课堂笔记的价值在于利用,数学有其学科的特殊性,把数学的“概念理解”、“技能习得”与“问题解决”当作陈述性的知识来学习显然是不恰当的,也是学不好数学的. 过多地依赖模仿课堂笔记内容来解题,不仅影响对解题方法的理解,更阻碍数学基本技能的习得和解题能力的提高. 利用课堂笔记,课后有针对性地对自己课内未能有效掌握的内容进行再学习,再研究,对提高数学能力有显著效果.

浅析新课改下高中数学教学

一、高中数学教学理念在新课改下的变化

首先应该明确一个问题那就是教学方式的指导思想就是教学理念,有什么样的教学理念就会产生相应的教学方式,因此要想在新课改下掌握高中数学的教学方式就要对其教学理念进行研究.

(1)新课改的教学理念相对以往的教学理念更加强调高中数学的基础性.

在新课改下,相应的增加了高中数学的教学内容,高中数学分为必修和选修课程,必修课和选修课所涉及的内容都是高中的数学中的最基础的内容,而不同点是在选修课程中增加了圆锥曲线、参数方程、导数等相关内容.

(2)新课改教学理念更加重视数学的文化价值.

新课改下的数学教学理念更加注重数学的文化价值.在以往的数学教学理念下文化价值的培养主要是通过语文教学来达成的,新课改下数学选修课本3或4的课程里,增加了《数学史选讲》、《风险与决策》等新内容.其中《数学史选讲》的内容讲的是数学的来龙去脉,及其发展轨迹.从这方面我们可以看出新课改下对数学教学的文化价值更加重视,以期让同学们在数学的学习中培养正确的数学观.

(3)在新课改下对“以人文本”的教学理念更加关注.

新课改下的高中数学课程有了相应的调整,分为两个模块,第一个模块就是高中数学学习必须修学的5个基础知识模块.这体现了对高中数学基础性的重视,在这个模块之外新增加了选修模块,选修模块可以让同学们凭借个人兴趣,选择自己喜欢的科目,举例来说,如果有的同学喜欢数学的文化价值,那么它可以在选修模块,选修数学史的课程,以便更好地了解数学的起源及发展历史.如果有人喜欢研究数学,那么可以在选修课程中选择高中数学的延伸课程.同学们可以根据自己的兴趣爱好选择自己喜欢的课程,这样的教学模式更加体现了“以人为本”的教学理念.

(4)新课改的教学理念中更加关注教师自身素质的提高.

在传统的高中数学教学中,都是以教师为主体,教师们会按照教案以及课程安排来进行教学,教学模式很单一.当然这种教学模式下,教师们能很好地完成教学任务,但是教学质量倒不是很好.新课改下的教学理念提出,教学的主体应该是学生们,教师应该根据学生们的兴趣爱好,安排课程章节.不仅这些,新课标下高中数学增加了选修内容这些课程,要求教师们也得加强学习努力提高自身的专业水平,同时教师们应该不断地学习有关数学教学的其他学科,比如教学心理学等内容不断提高自身素质.

二、新课改下高中数学教学方法的初步探究

新课改的最终目的是,改善教学方法,提高教学质量.

1.建立教学情境,运用兴趣教学法

新课标下的教学方法要求教师改变以往以课本为落脚点填鸭式的教学模式,数学教学以解决实际问题为落脚点,要求教师总结教学经验,把数学问题尽可能地进行情景演化,从而提高同学们解决实际数学问题的能力.把对数学知识的学习,转变成运用数学知识解决实际问题的研究,进而提高同学们的数学学习兴趣,开发数学学习潜能.

2.新课改下要求对数学内容新增加的选修部分有清晰的理解和准确的定位

新课标下高中数学教学内容有所增加,这些新增加的内容是新形势下对数学教学提出的新要求,教师应对新增加的教学内容仔细的研究,充分的理解,给予高度的重视,要把这些新增加的内容与新课标下的教学理念,教学方式有机的结合起来,同时教师应该根据实际的情况对新增加的教学内容进行有效地把握,对新增加的数学内容进行精准的定位.以导数为例,要结合新课标下新的教学理念以及教学方法,对同学们进行教学,同时还要和生活中的实际问题结合起来.一定要谨记不要以记公式为数学的教学目的.

3.在数学教学中要注重对学生思维习惯的培养

在新课改理念的指导下要注重对学生思维方式的培养.传统的教学方式更多的关注教学成绩,数学教学更是强调对公式的死记硬背,不能够做到学以致用.其实教学的最终目的是要用学到的知识解决现实生活中的实际问题,要注重教学的实用性,数学教学更要注重数学的实际功能.因此在数学教学中教师要结合现实生活中的实际情况运用情景教学法,来展开数学知识的教授.要注重对学生数学应用意识的培养,让学生把在课堂上学到的知识运用到实际的生活中去,努力培养他们运用数学方法处理实际问题的思维和能力,要注重对数学学习思维的培养.

4.在数学教学中要注重对学生思维创新意识的培养

在数学教学中要一改以往填鸭式的教学方式,要注重对学生创新意识的培养.教师在数学教学中应该转变教学观念,应该把学生视为课堂的主体,要培养同学们积极主动汲取知识的学习方式,要运用科学的教学方法提高同学们的学习兴趣,积极地引导他们主动地对数学问题进行思考,在数学学习中要侧重对数学知识规律的掌握.要把同学们学到的知识结合实际的问题进行创新式的演练与应用,要明确数学的学习是一个主动的工程而不是单纯地对数学公式的死记硬背,要注重同学们的创新意识的培养.

三、总结

新课改的教学理念下对高中数学教学方式的探索,是一个漫长的过程,探索过程中要依照新的教学理念的指导,需要依靠教师和广大同学们的共同努力,积极地创新探索,在不断地总结经验中找到正确的教学方式,提高教学质量。

高一是数学学习的一个关键时期.我发现,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上. 要学好高中数学,要求自己对高中数学知识有整体的认识和把握.集合 进入高中,学习数学的第一课,就是集合.概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等.集合中的元素具有“三性”:(1)确定性:集合中的元素应该是确定的,不能模棱两可.(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个.(3)无序性:集合中的元素是无次序关系的.例:已知集合M={X|X²+X-6=0}集合N={Y|aY+2,a∈R},且N∩CuM=Φ,则实数a=多少?因为N∩CuM=Φ所以N⊆ M\x09因为M={X|X²+X-6=0}={-3,2}所以N={2}或{-3}或{-3,2}\x09当N=Φ时,a=0\x09当N={2}时,2a+2=0,a=-1\x09当N={-3}时,-3a+2=0,a=2/3\x09所以实数a=0或a=-1或a=2/3注意:不能忘记Φ时的情况 不等式(1)绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;通过两边平方去绝对值;需要注意的是不等号两边为非负值.含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解.(2)分式不等式的解法:通解变形为整式不等式;(3)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分.(4)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小.例:解关于x的不等式x-a/x+1

随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。

《 高中数学个性化教学探讨 》

个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等.

一、高中数学个性化教学存在的问题

1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性.

2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准.

3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的.

4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义.

二、高中数学个性化教学策略

1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中.

2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量.

3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果.

4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法.

《 高中数学互动教学探讨 》

教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。

一、转变教师角色,师生平等参与数学教学活动

师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。

二、构建教学场景,师生在融洽氛围中深刻互动

情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。

三、注重综合评价,促进高中数学互动教学

在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。

有关高一数学论文范文推荐:

1. 高中数学论文范文

2. 高中数学评职称论文范文

3. 有关高中数学论文范文

4. 浅谈高一数学相关论文

5. 数学系毕业论文范文

6. 关于高中数学论文

7. 浅谈高中数学模型论文

8. 高中数学教育教学论文

生物数学建模论文合集模板

无忧在线有很多数学建模论文,你去搜一下就行

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

儿童文学杂志合集

科普阅读是赋予孩子对客观世界的认识,这些书籍就像是一块块拼图,帮孩子们拼出更大更完整的图景!下面是我收集整理的适合少儿看的科普杂志,希望对大家有所帮助。

1、儿童科普杂志,环球少年地理

推荐理由:内容新奇,幽默风趣,图片精美。知识有趣,栏目好玩,故事真实。

适合年龄:6-12岁小学生。全年订阅12期。

《环球少年地理》中不仅涵盖了科学、地理、历史和文化,还包含了很多新奇事物的内容,它是一本风趣幽默的科学读物,精美的图片搭配作者的笔触,以一种非常有趣的形式,将知识更好地呈现了出来,大大扩展孩子的眼界,可以让6-12岁的儿童在惊讶中感受到大自然的神奇,十分适合小学生阅读。

2、低幼科普,环球少年地理幼儿版

推荐理由:简单温情故事,好玩乐趣横生。图片真实精美,知识科学有趣。赠送游戏贴纸,锻炼手眼协调。

适合年龄:2-7岁儿童、学生。全年订阅12期。

《环球少年地理》杂志与《美国国家国家地理幼儿版》版权合作,它有着简单易懂的故事,科学有趣的知识,还有精美真实的图片,会带着孩子在些许惊讶中逐渐认识这个世界,感受大自然的神奇。

3、读者,文学爱好者必读

推荐理由:陶冶情操,净化心灵,青年文学。博采中外,启迪思想,开阔眼界。生活哲理融入文章,内容丰富多样。

适合年龄:能够独立阅读的所有年龄。全年订阅24期。

《读者》编发的文章极其注重思想性与可读性,它有很强的感染力,能够让你在阅读中感受文字与精神的交汇,这本杂志将正确的思想、高尚的道德、生活的哲理都巧妙地融入了文章之中,有助于陶冶情操、净化心灵。

4、亲子读物,红袋鼠幼儿画报

推荐理由:幼儿故事出自儿童文学作家之手。幼儿图画出自儿童绘画画师之笔。

适合年龄:3-7岁幼儿阅读。全年订阅12期。

《幼儿画报》之中的每一篇故事均出自儿童文学作家之手,其中的每一幅画都出自儿童画家之笔,它深受3-7岁幼儿及其家长和老师的喜爱,借助故事传授知识是它存在的最大价值。

5、小学生杂志,米小圈上学记

推荐理由:好玩搞笑,教你如何轻松写日记。拓展视野,介绍全世界的风俗人情。

适合年龄:1-5年级学生阅读。全年订阅12期。

米小圈上学记里描绘了一个好玩、搞笑,又很倒霉的米小圈同学,很适合1-5年纪的学生阅读,《米小圈》的故事里教悲观的孩子学会乐观,让乐观的孩子更受欢迎,并且还会教小朋友轻松写日记。

扩展资料:

1、《东方娃娃》适合3-6岁

《东方娃娃》分为智力刊、美术刊、绘本刊、幼儿大科学

自1999年创刊以来,《东方娃娃》编辑部一直坚持以“打开一扇阅读的门,开始一生爱的旅程”的宗旨以及“蹲下来与儿童说话”的姿态,以适合幼儿的图画书理念以及特别贴近幼儿阅读心里的编辑方式,精心打磨刊物,在刊物创意和设计上锐意进取、独树一帜,力图改变中国孩子的阅读现状并提升他们的阅读品味,为他们身心的健康成长提供高质量的“精神营养”。

2、《环球探索杂志青少年版》适合6-14岁

《环球探索》(青少年版)是美国探索频道(Discovery)独家授权、中国科学院老科技工作者协会推荐和中国邮政发行畅销报刊。读者对象是6-14岁的青少年。

全球220个国家和地区、45种语言、20亿用户所能看到的缤纷世界,自然科学、人文历史、科技发展和科学实验四大领域火热呈现,带给孩子“大科普”的阅读感受,真正体验到环球探索的魅力。

国家自然科学最高学术机构——中国科学院科普讲师团专家的鼎力支持,专业科普人士的亲笔著述,紧跟国内外最新发生的科学事件,展现全球优秀摄影师的.倾力之作,为小读者呈现人生第一本科普学习类杂志,奉献精彩绝伦的科普视觉盛宴。

3、《博物》 8岁以上

《博物》是《中国国家地理》青春版,是在CNG同一品牌下,依据读者定位不同而产生的两本杂志,是《中国国家地理》杂志有益的补充。以青少年为主要读者对象,引导学生走进自然、勇于实践、博学广纳、探索求实的世界。杂志是一本面向青少年学生的自然人文综合知识类刊物,它提倡博物学的复兴,引导学生走进自然、勇于实践、博学广纳、探索求知。

它集知识性、趣味性、互动性于一身,图文并茂,紧跟时代。内容广泛涉猎天文、地理、生物、历史等诸多领域,具有科学性、权威性、趣味性,对青少年的健康成长起到良性的引导作用。

4、《我们爱科学》儿童版适合6-12岁

《我们爱科学》画报版是共青团中央主管的唯一国家级少儿科普期刊。

中国少儿科普第一刊,全国少工委少年儿童科普教育指定用刊,中国少儿报刊金奖得主,获同类刊物新闻出版总署最高品质认证。同类刊物发行量最大,伴随了几代人的成长。

生动活泼趣味,神奇时尚精彩,快乐提升智慧,内容丰富。通俗实用科学课,动手动脑好教材。

5、《少年时》(原同龄鸟)适合6-15岁

《少年时》是儿童启蒙教育高端产品,邀请西方优秀的文学和科学作家团队一起创造。制作团队具有中西跨国教育和文化背景,深刻了解东西方文化和教育的异同。

《少年时》内容的思想是,培养孩子的国际观和创新力,倡导全面教育,包括中国学校缺失的生命,科学,人文和英语教育。

6、《十月少年文学》适合8-13岁

《十月少年文学》是一本专门为少年儿童创办的纯文学期刊,她秉承《十月》纯正的文学品格,与《十月》一脉相承,血脉相连。本刊由国际安徒生奖获得者曹文轩先生担任主编,面向8—13岁的儿童读者,其内容以当代儿童文学大家的中长篇作品为主,兼顾短篇作品。

7、《儿童文学》儿童版适合7-10岁/《儿童文学》少年版 7-12

《儿童文学》由共青团中央和中国作家协会于1963年联合创办,风雨50年,哺育三代人,其麾下汇集了几代最有名望的儿童文学作家,被誉为“中国儿童文学第一刊”。本刊刊登的文学作品,冰清玉洁,品位高雅,可读性强,既教读书,又教做人,在潜移默化中提高小读者的写作水平和综合素质,是应试教育与素质教育的完美结合。

2014年1月,《儿童文学》改为周刊,分为“少年双本套”和“童年双本套”两个套装。《儿童文学》少年双本套,由《儿童文学》(经典版)和《儿童文学》(选萃版)组成,将原创精品儿童文学和精粹的文摘作品相结合,既能让孩子读到当代精彩的文学佳作,又能使孩子享受丰富多样的阅读趣味,在陶冶心灵的同时,提高写作水平,可谓一套在手,阅读写作两不愁!

8、《幼儿画报》适合3-7岁

《幼儿画报》以教育部颁布的《幼儿园教育指导纲要》为指导,树立高度的责任感,创设适合中国幼儿身心发展的栏目及内容,如:“红袋鼠的自我保护故事” “好习惯故事” “宝宝唱成语故事” “奥运城堡漫游记”等栏目。每篇故事均由著名幼儿教育专家指导, 保证了《幼儿画报》的专业性和权威性。

《幼儿画报》书刊主角:红袋鼠、火帽子、跳跳蛙、草莓兔、呼噜猪、叮当狗、乐乐、悠悠和嘟嘟熊。

《幼儿画报》成为国家教育部推荐的优秀幼儿期刊,成为中国邮政报刊发行网惟一推荐的幼儿期刊,并荣获中国优秀少儿报刊金奖,在同类期刊中获国家新闻出版总署最高品质认证。其月发行量已超过百万,稳居同类期刊首位。

9、《东方宝宝》适合0~4岁

创刊伊始,《东方宝宝》就坚持“打开一扇阅读的门,开始一生爱的旅程”的宗旨,希望宝宝在刚刚开始睁开眼睛了解世界之时,就能得到高品质的精神食粮,不但能获得知识,更能了解情感,感受爱,因而在心智方面都能得到健康的成长。

该刊每期包括:大16开全彩色正刊、16开副刊和 一本小小书。独特的圆角设计充满人性化,故事生动、图画精美,多年来一直倡导先进的育儿理念,传播最新的育儿知识,深受小宝宝和年轻父母的喜爱,发行量在同类刊物中居于前列。《东方宝宝》-办刊理念:自创刊以来,《东方宝宝》经历了一系列的变更和改版,但是其追求卓越、勇于创新的办刊精神却始终不渝。

10、《萌》适合3-7岁

绘本月刊《萌》既是国内第一本绘本资讯类刊物,又是国内第一本针对绘本馆和绘本爱好者的刊物,旨在帮助更多家庭开启绘本生活,更是蒲蒲兰首次以绘本月刊的方式为读者提供全球优秀绘本。

过去,蒲蒲兰已经把绘本馆做成了世界最美书店;现在,蒲蒲兰会把《萌》做成世界最美绘本月刊。

11、《锋绘》适合 3-7岁

《故事飞船·宝宝会读》是法国顶级绘本杂志,同时有线上精品阅读课程,更科学的提高宝宝阅读能力。作为法国法国百万畅销杂志,从中精选孩子最爱的故事,加入国内获奖作者原创故事,让杂志的图文更加丰满,让孩子从此迷恋上阅读。

12、《好奇号》适合6-12岁

《好奇号》杂志每期拥有128页超大容量,包含“科学前沿”、“考古少年”、“世界故事”三大板块。通过主题化和互动化的内容设置,深度融入启发式和探索式的教育理念,让孩子在阅读中学会思考和探索。

《好奇号》杂志从科学、文化、社会等多个层面反映了世界最新发展趋势,有助于塑造孩子的大视野与大格局。

此外,《好奇号》杂志每期加赠一本32页中英双语读物(源自旗舰儿童文学杂志Cricket),帮助孩子从小融入美式英语语境,更好学习英语,提升竞争力。

13、《环球少年地理》适合7-14岁

《环球少年地理》是美国《国家地理·少儿版》的中文版。经国家新闻出版总署批准,由《美国国家地理》杂志社和青岛城市传媒合作推出的《美国国家地理》少儿版(《NG KIDS》)——《环球少年地理》,在2013年1月11日正式发刊,面向国内公开发行,目前全球发行量很大的儿童科普杂志《NG KIds》美国国家地理儿童版,作为美国国家地理学会的官方杂志,1888年创刊至今,国家地理杂志已经成为世界上广为人知的一本杂志。众多的欧美名人都是看着《NG KIds》国家地理儿童版长大,历任美国总统的办公桌上总会有一本国家地理杂志。

《环球少年地理》将与《NG KIDS》同步发行,可以让中国小读者在第一时间看到全球最顶尖的少儿人文杂志。与此同时,该杂志还将编加涵盖自然、动物、人文历史、考古探险等科普知识的中国本土内容,让孩子们从中也能感受到锦绣中华的绚丽多姿。

14、《科幻世界》适合12-16岁

《科幻世界》以发表科幻小说为主,国内众多知名科幻作家,皆在此受到全国科幻读者的瞩目。包括雨果获奖作品:刘慈欣的《三体》,也是首发连载于《科幻世界》,并在此一战成名,《三体》也获得了该届《科幻世界》“银河奖”。

近期《科幻世界》再次携刘慈欣新作《不能共存的节日》与科幻小说爱好者见面。《科幻世界》刊载过许多优秀原创科幻小说,本杂志不仅发掘了众多优秀的科幻小说家,同时也是科幻爱好者的乐园。如果你是一个科幻小说家,这里是你实现梦想的地方,如果你是科幻小说爱好者《科幻世界》绝对能满足你对所有的科幻的需求和期待。

15、《十万个为什么启蒙版》适合 6-9岁

启迪科学智慧,激发创造灵感,内容趣味丰富,插图精致,知识丰富,内容新颖,打造诸多精彩栏目, 提高少年儿童的动手能力和创造力。

16、《探索历史》适合6-12岁

《探索历史》以精彩的原创历史故事、惊险的探险故事、幽默风趣的漫画等形式,向儿童传递中国源远流长的传统文化,介绍世界各地的历史。 “以史为鉴,可以知兴替;以人为鉴,可以知得失。”《探索历史》旨在培养少年儿童正确的人生观和价值观,增长知识和智慧。

富有特色的我形象设计:“终极BOSS”H博士、“酷炫狂霸”东芭拉、“极品说书人”孔龙、“资深宅女”乌米,以及“记者里说相声最好”的特约小记者史奇、哆哆为您共同打造精彩绝伦的《探索历史》。

17、《万物》适合8-15岁

这是一本孩子们梦寐以求的科普杂志!令人赞叹的超酷图片,逼真的三维原理大解构、脑洞大开的思维挑战,让孩子们在阅读中不知不觉迷上科学。原汁原味呈现英国原版精华,汇集全球顶尖的科学作者资源,为青少年传递世界知识与智慧的结晶。这也是How It Works杂志畅销全球、长盛不衰的秘诀。

专门的儿童文学好像比较少,下面几个偏向儿童可以考虑一下:《中国少年报》、《儿童文学》、《(故事大王》、《红领巾》等报刊和杂志 另外一些常见的杂志也可参考一下: 1、《科学画报》月刊由上海科学技术出版社主办,于1933年由中国科学社在上海创刊,是我国历史最悠久的综合性科普期刊。主要栏目有:当代科技、热点聚焦、科技未来、科学生活、科技博览、科技新产品、科学文艺等,内容包括科技前沿、科学发现、科技广角科技畅想、未来天地、生活创意、医学新知、电脑广场、大千世界自然之谜、科技争鸣、百科珍闻、遥望星空、科学小说。《科学画报》的读者对象为具有初中以上文化程度的科技爱好者,以年轻人为主体。 2、《科学中国人》月刊系中国科协主管的大型彩色知识画报。它以“弘扬科学精神、传播科学思想、普及科学知识”为办刊宗旨,以提高全民族科学文化素养为已任,得到了包括两院士在内的知名学者、科学家的好评,是广大知识分子开阔眼界,获取最新知识的良师益友。主要栏目有:人物栏目:报道科学家的成才之道及知识分子在工作、学习、生活中的酸甜苦辣;热点测温、中国论坛:关注我国科教领域的热点、焦点,并配以国内最权威专家的评述;科学前沿:介绍国内外最新科研成果及学术动态;科技博览:介绍最新科学知识、高新技术及产品;人与自然:关注环保、生态,重视人与自然的密不可分的关系,以科学考察为主;异域来风:系列介绍世界著名高校、世界顶级科学杂志最新重要文章及世界知名科学家的最新思想、观点。3、《科幻世界》月刊创刊于1979年,至今已有二十余年的历史,发行量高达50万份,是中国,乃至全世界发行量最大的科幻杂志,曾获得“世界科幻协会最佳期刊奖”,并入选“中国百种重点社科期刊”,是中国科幻期刊中一面历弥久新的金牌。《科幻世界》以发表科幻小说为主,所设立“银河征文奖”是中国科幻业界内代表中国科幻整体水平的最高奖项。国内知名科幻作者,皆在此受到全中国科幻爱好者的瞩目。“把握现在,拥抱未来。”这便是《科幻世界》风靡于大中学生、广大青年人和所有科幻爱好者中的真正原因。

2011年三月号:《千雯之舞》(28元)、《鬼狗》(19元)、《天鹅牧场》(18元)、《驯鹿之国》(20元) 2011年四月号:《走走停停》(18元)、《看不见的风在吹》(18元)、《像南瓜,默默成长》(15元)、《佛光镇的秘密》(12元)、《飞龙火警》(13元)、《少年大解救》(14元)、《地器之谜》(15元)、《花舍邮局》(18元)、《蒲公英收购站》(18元)、《庚子红巾》(18元)、《海爸爸蓝房子》(18元)、《来自鬼庄园的九九》(18元)《到你心里躲一躲》(18元),十大青年作家丛书(共200元) 2011年五月号: 《儿童文学》六一大礼包(290元) 2011年六月号:《完美的花朵》(19元)、《马王》(8元)、《每个孩子都是天使》(20元)《笑容在阳光里》(20元)、《流浪的暑假》(20元) 2011年七月号:《头羊》(8元)、《泸上春歌》(18元) 2011年八月号:《儿童文学故事》(10元)、《草原犬》(8元) 2011年九月号:《猫王》(18元)、《杨梅》(19元)、《一滴泪珠掰两瓣》(18元)、《网路小神探》(16元)、《牛蹄窝的秘密》(14元) 2011年十月号:《夜色玛奇莲(1~4)》(共32元,每本8元)、《萝铃的魔力(第1~4部)》(第一部(《巫术族的预言(上、下)》)25元,第二部(《墨夷家族(上、下)》)30元,第三部(《不存在的秘方(上、下)》)第四部(《信徒,生命的余响(上、下)》)30元)、《水仙们》(16元) 2011年十一月号:《睡尘湖》(19元)、《流萤谷》(19元) 2011年十二月号:龙年大礼包(577元)、《我是你的守护星》(25元) 2012年一月号:《震动2》(20元)、《白壳艇》(18元) 2012年二月号:《铁角》(18元)、《猫王2》(19元)、《黑夜鸟之黑夜陨歌》(26元)

有儿童文学QQ群:43076937、189397623、113039858、72195657、221597624、151048309。

是【时尚版】还是【选萃版】还是【经典版】? 只有《儿童文学》2013年4月(上)目录 文学佳作 005 拐角书店 张之路 020 那份深切的忧伤,如何 放置在童真的视角下 ——评张之路短篇小说《拐角书店》 徐 妍 第十届擂台赛·大决战 024 祁祁牙科 周 涛 036 天上的苹果 雁 阵 046 宇宙的另一边 陈诗哥 057 山桃树不睡觉 童 子 中长篇选载 071 失败者联盟(中) 喵掌柜 小说一族 086 水猴 陈崇正 幻想文学 096 田螺花 郭凯冰 散文雅苑 105 外婆的玫瑰花 张寄寒 诗路花语·魅力诗会 109 我爱你胜过整个儿夏天 萧 萍 111 玫瑰色豆荚的小屋(外二首) 闫超华 114 我从来没有像今年这样 热爱麦子(外一首) 杨 康 116 奶奶的棉花田(外一首) 张晓楠 青春纪实 117 中国小女孩与法国老奶奶的爱心传奇 陈 新 异域文学 132 飞上天的小萤火虫 [日]酒井朝彦 著 李日月 译 网路传真 137 世界上陪你最久的一样东西 玄者成鱼 三地书 156 2012年《儿童文学》十大 “魅力诗人”评选揭晓 本 刊 157 你来我往 本 刊 159 笔友飞鸿 本 刊

在百度贴吧 儿童文学吧 看看吧

地址:北京市朝阳区左家庄北里五号楼《儿童文学》杂志社 邮编:100028 网址 ex.. 邮箱ex@263.中少网站 coppg..

来自鬼庄园的九九 ,,,,,,,,,青铜葵花

132465798

《中国儿童文学-2006合集》目录 春季篇 本刊特稿 “讲真话,把心交给读者” 新作选粹 水孩子(小说) 天使的歌唱(小说) 清明(小说) 顺子(小说) 骑马上鸡山(散文) 心在春风中飘荡(散文) 五花山下收土豆的人(散文) 朝天堂方向奔走(童话) 华啦啦的航空信(童话) 糊涂先生作曲(童话) 我是个不漂亮的女孩(诗歌) 高朋友,矮朋友(诗歌) 会变魔术的家伙(诗歌) 诗长上翅膀(朗诵诗) 它想把那只巢喊出芽儿(诗歌) 大自然的歌(诗歌) 想问你的信箱(诗歌) 夏天和冬爷爷藏猫猫(诗歌) 本期焦点 青年一代理论批评的座标在哪里 文心雕餐 怀念我们的八十年代 作家视角 变化中的中国儿童和青年少文学 双人茶座 走儿童文学民族想像之路(对话) 理论与争鸣 原型·儿童·儿童文学 正确的理论从哪里来 理论新视窗 中国儿童文学“从无到有”说 …… 院校论坛 夏季篇 秋季篇 冬季篇 --------------------------------------------------------------------------------------------- 《儿童文学》杂志社邮购业务,咨询电话:或84514228。 《儿童文学》杂志社地址:北京朝阳区左家庄北里5号楼 邮编:100028 ---------------------------------------------------------------------------------------------

儿童文学,那得看孩子年龄。3~9岁《安徒生童话》《格林童话》《吹牛大王历险记》《故事大王》《弟子规》《西游记》(千万别看原著,看少一点页数的。)10~13的,你就应该让他看作文了。其他的先不要管。你觉得他成熟一点了,就可以提前让他看14岁以上看的。14~16的《老人与海》《骆驼祥子》《假如给我三天光明。》《三国演义》《红楼梦》《水浒传》让他多接触一些文言文。比如《论语》四书五经,《春秋》,《大学》等文学作品。

不知道你要什么样的,推荐你几本经典的吧 《尼尔斯骑鹅旅行记》 获过诺贝尔奖 《一千零一夜》、《伊索寓言》、《安徒生童话》基本上都耳熟能详了 童话小说类的《木偶奇遇记》 、《汤姆·索亚历险记》 、《爱丽丝漫游奇境记》、《快乐王子及其他童话》、《石榴之家》 、《林莽传奇》 、《小黑人桑宝》 、《兔子彼得的故事》 个人比较喜欢《孤星血泪》(适合大一点儿的孩子,高中左右的)

《小溪流》ABC版(60-80)、《聪明泉》EQ版(50)、《幽默小读者》(100~150) 、《快乐故事》(原《儿童故事》)(150-300)、)《快乐童话》 (80-150)、《冒险大王》(100),《宝葫芦》(150-300)等……括号里是稿费。还有不少,不一一列举了,详细的具体约稿可以百度“天使领域 浮云殿”,注册论坛,浮云殿版块里都有最及时可靠的信息,兰色粉色是有信誉,大家都拿到稿费样刊的杂志,下面是投稿发表过的写手反馈,邮箱地址百度是不能贴的,复制其实也没多大意思,约稿这东西更新很快,编辑调换也是,编辑私人邮箱都是不能随意暴露的,这个是潜规则,免得编辑邮箱里都是垃圾邮件,同理,能在百度贴出来的邮箱,大多已是被编辑遗弃或是投过去石沉大海的公共邮箱,投稿常识可看浮云目录里的扫盲课,不然给编辑印象不好,合作就困难很多了,毕竟现在写手多的是,大家都要竞争。我一向认为授之鱼不如授之渔,新手混圈子,能知道一个正确信息地,能融入一个写手编辑圈是最重要的,光几个投稿邮箱,有什么用,投稿需要了解的常识和知识多了去了…… ++++++++++++其实我觉得出版社比杂志更难投吧~如果不是出名作家,没有名气,出版社会给一个新手包装出书么?目前收儿童类长篇的貌似不多,上次中学生杂志编辑让我找人写儿童漫画脚本,钱不多,要求还是很高的,都是私下找有能力的写手试着写,通过了样本和策划才能写整本。还有一次,一个出了不少书的长篇写手让我介绍能投少年励志类长篇的地方,她把出版社都试遍了,这个类型实在卖不出去,我就介绍童话杂志的编辑给她,让她一个个去问的,总之,很复杂,老手都这么艰难,何况新手,当然她最后还是卖出去了,投稿嘛,就是要人缘要信息要坚持。我觉得长篇出版的消息比杂志更少更不靠谱,可能你在网上找个半天都搜不到几个正确的,搜到了投过去也等不到回复。不信,你可以试试的。

中学集合的毕业论文

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

相关百科

热门百科

首页
发表服务