欧拉函数ψ( N) 是数论中重要的函数, 由18 世纪数学界最杰出的人物之一欧拉提出, 内容如下: 小于自然数N 并与N 互质( 除1 以外无其他公因子) 的自然数的个数称为欧拉函数ψ( N) 。该函数在很多领域有广泛的应用, 如在数论中证明歌德巴赫猜想, 在离散数学中求循环群的生成员, 在计算机网络安全中的RSA 体制等。实现欧拉函数ψ( N) 通常有3 种算法, 每种算法都有它的优缺点, 只要证明是正确的( 该论文的3 种算法都是正确的, 证明省略, 可参考相关书籍, ) 就可以用来证明或者反驳推论和猜想, 得到更多的正确推论。在求欧拉函数时, 当N→∞时, 人工计算是不现实的, 利用计算机计算可以减轻工作量, 计算结果正确而且运行速度快。另外, 利用计算机软件模拟那些比较复杂、运算量大的概念时( 如RSA 体制) , 可以给使用者带来许多方便。给我一个邮箱,我给你发过去!!