一个叫娜芳,一个叫石峰的电子软件工程师,他们两个技术特别的好,对软件达到出神入化
要熟悉相关的科目,明白每个科目的考点,购买历年真题多刷多看。学位的英语达到60分,而且每科的平均分要达到该院校的要求,还要符合考本科的基本要求。
电子工程师是一个对从事集成电路、电子电气设备等相关产品生产、研发工作的技术人员的统称,一般分为硬件工程师和软件工程师。硬件工程师主要要了解电路方面的知识,知道常用电子元器件的作用,原理,会使用电子测量工具,会使用电子生产工具,还要会装配,测试,生产工艺,维修等等,是技术与手动操作的结合。软件工程师则精通电路知识模拟电路,数字电路,会分析电路图,设计电路图,制作PCB,了解各类电子元器件的原理,用途,型号,精通单片机开发技术,会使用编程语言(汇编语言、C语言),能很熟练的用电脑作为辅助设计工具进行工作,能得心应手的使用常用的设计软件。
中学自学考试专科报名流程
报名还可以在各个地方的教学考试网站上开展报名,或是或者找一些自考大专的报名部门进行报名,根据交费后就能完成报名步骤。
第一次报名参与高职教育自考考试的新生儿应先申办报名办理流程,接着才可以申办报名办理流程,再生报名分为在网上报名和资格审查两阶段。在网上预报名期限内学生们独立登录自考报名省区文化教育考试院,登陆报名通道逐渐申请注册报名,进行报名的考生必须到指定地点开展资格审查。
然后就是考试,自考都是没有入校考试的,每一年的4月和10月全是自考的考试时长,局部地区会一年有四次的考试时长,每一次考试考试合格之后就可以继续等待下一次的考试,直至考过每一个考试学科。
成年人自考专科如何报名?
(1)登陆所报名区域的自考在网上报名网址;
(2)按照规定填好报名信息内容;
(3)考生必须自己持身份证去所在城市自考公司办公室来办理确定;
(4)考生当场签名,同时提交多个张1寸证件照;
(5)取得考试通知书,然后进行报名交费;
广东省自考大学本科学位申请资格如下所示:
1、申请办理学土学位标准考生根据高等职业教育自学考试规划的所有课程(含笔试题目、口语、见习、试验),论文经论文答辩成绩优良且一次通过,思想道德经评定每个符合规定者,依照国务院学位办《关于授予成人高等教育本科毕业生学位的暂行规定》及相关规定,由有学位授予权的招生院校授于相对应课程学位。
2、学位资质限定凡对符合条件的高等职业教育自学考试的本科学生都有一次申请资质,第一次不通过者以后不再补领。
3、学位外语考试考生学习期内每个人最多能参与三次外语考试(包含毕业之后一次)。毕业之后可以参加一次学位英语考试(上半年度大学毕业者须参加当初学位英语考试,后半年大学毕业者可参与第二年考试)。
4、补授状况历届未授于学土学位高等教育自学考试本科学生,一律不会再补授。
自考金融业本科有哪些考试学科呢?
中国近现代史规划纲要、马克思现实主义基本概念总论、英文(二)、日语(二)、德语(二)、综合英语(四)、概率统计与数理统计(经营方式)、离散数学(经济类)、管理信息系统中计算机技术、管理信息系统中计算机技术(上机操作)、管理心理学、市场营销、基础会计学、国际投资、银行会计学、保险学原理、财政与金融、国际经济学、金融理论与操作实务、金融法、金融业专业毕业论文、货币银行学、商业银行业务和经营。
你的论文题目要求对最终要达到什么样的目的,解决什么问题,并不明确,建议你跟导师问清楚。搞清楚问题,论文就完成一半了。
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
欧拉函数ψ( N) 是数论中重要的函数, 由18 世纪数学界最杰出的人物之一欧拉提出, 内容如下: 小于自然数N 并与N 互质( 除1 以外无其他公因子) 的自然数的个数称为欧拉函数ψ( N) 。该函数在很多领域有广泛的应用, 如在数论中证明歌德巴赫猜想, 在离散数学中求循环群的生成员, 在计算机网络安全中的RSA 体制等。实现欧拉函数ψ( N) 通常有3 种算法, 每种算法都有它的优缺点, 只要证明是正确的( 该论文的3 种算法都是正确的, 证明省略, 可参考相关书籍, ) 就可以用来证明或者反驳推论和猜想, 得到更多的正确推论。在求欧拉函数时, 当N→∞时, 人工计算是不现实的, 利用计算机计算可以减轻工作量, 计算结果正确而且运行速度快。另外, 利用计算机软件模拟那些比较复杂、运算量大的概念时( 如RSA 体制) , 可以给使用者带来许多方便。给我一个邮箱,我给你发过去!!
一个程序的核心在于算法。比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。
采矿工程主要研究学习矿床开采的理论和方法,发展矿业新技术。下面是我带来的关于采矿工程论文题目参考的内容,欢迎阅读参考! 采矿工程论文题目参考(一) 1. 深海采矿装置升沉补偿系统模糊自整定PID控制研究 2. 阿勒泰某金矿采空区稳定性评价与采矿方法优化研究 3. 新型尾砂胶结剂在某铜矿下向分层胶结充填采矿中的应用研究 4. 深井开采矿压特征及围岩控制技术研究 5. 康家湾矿深部难采矿体采场稳定性及安全开采技术研究 6. 缓倾斜薄至中厚磷矿体地下开采矿压显现及覆岩活动规律研究 7. 缓倾斜中厚矿体机械化上向水平分层充填采矿法关键技术研究 8. 动力吸振式深海采矿主动升沉补偿系统设计及控制研究 9. 采矿权性质及制度完善研究 10. 深海采矿作业过程扬矿管线系统空间构形与动态特性研究 11. 基于我国采矿及安全防护技术变革的安全观的形成与发展研究 12. 喀斯特石漠化地区采矿环境影响及综合治理研究 13. 深海采矿扬矿管道工作特性的流固耦合分析与综合评价研究 14. 深海采矿扬矿管道系统力学行为模拟试验系统研究 15. 缓倾斜薄矿脉铝土矿采矿方法优选及采场结构参数优化研究 16. 露天转地下开采境界顶柱稳定性分析及采矿技术研究 17. 采矿巷道围岩变形机理与支护效果数值模拟研究 18. 复杂多金属矿床可视化模拟及其三维采矿设计技术研究 19. 1000米采矿船动力定位的推力系统研究 20. 上向进路式尾砂胶结充填采矿法采场结构参数优化研究 21. 空场嗣后充填采矿法充填体合理强度分布规律研究 采矿工程论文题目参考(二) 1. 复杂条件下地下采矿稳定性研究 2. 地下采矿与地质环境互馈机理及矿山地质环境治理研究 3. 深井开采矿柱稳定性分析与可视化验证 4. 深海采矿被动升沉补偿系统参数设计与仿真研究 5. 大倾角煤层开采矿压特征及围岩控制技术研究 6. 露天采矿的生态影响综合评价与生态环境保护及修复对策研究 7. 基于三维离散元管线模型的深海采矿1000m海试系统整体联动动力学研究 8. 高分段大间距无底柱分段崩落采矿贫化损失预测与结构参数优化研究 9. 基于GIS的吉林市采矿用地复垦适宜性评价 10. 采矿权抵押法律制度研究 11. 矿产资源价值观及采矿权评估方法研究 12. 基于PLC采矿厂生产设备监控管理系统的研究与开发 13. 江苏省露采矿山岩质边坡生态恢复技术研究 14. 采矿权研究 15. 矿井深部开采矿压与支护技术研究 16. 基于复杂系统模型的地下采矿无线传感器网络中的优化混合神经网络 17. 膏体充填采矿关键安全问题研究 18. 石屑混凝土的性能及环境效益 19. 基于GIS的煤矿采掘生产状态可视化管理系统研究 采矿工程论文题目参考(三) 1. 露天采矿的生态影响综合评价与生态环境保护及修复对策研究 2. 复杂多金属矿床可视化模拟及其三维采矿设计技术研究 3. 川口钨矿半风化矿脉群难采矿体采矿方法研究 4. 房柱式采矿地压动态控制及人工智能应用研究 5. 单泵与储料罐组合的深海采矿软管输送系统研究 6. 山寨煤矿开采地质环境评价 7. 白登磷矿台阶爆破参数的合理选择及爆破块度分布规律研究 8. 井筒受采空区塌落影响的破坏机理及治理研究 9. 金川二矿区废石全尾砂高浓度料浆泵压管输充填系统研究 10. 大红山铁矿上部露天开采与下部地下开采的安全影响研究 11. 云南某铁矿采场结构参数优化研究 12. 金川矿山废石全尾砂高浓度充填料浆管输阻力模型研究 13. 黄金行业分析报告 14. 铰接式自卸汽车悬架纵向传力机构的有限元分析 15. 3DGIS构模与FLAC-3D建模网格数据融合技术研究 16. 井筒保护煤柱开采设计与变形监测及数据处理 17. 深井巷道失稳分析及锚杆支护参数优化 18. 基于Surpac的钨矿床三维建模及储量可视化计算 19. 深部矿岩工程条件与开挖稳定性分析 20. 全尾砂胶结充填自流输送管路改造及优化 21. 深部矿柱失稳三维探查及数值分析 猜你喜欢: 1. 采矿工程毕业论文范文 2. 采矿工程论文范文 3. 采矿论文范文 4. 采矿工程本科毕业论文 5. 采矿工程毕业论文范文2017年
模型有三个层次:
第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。
第二个层次,描述性统计,分析数据分布特征。
第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。
第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。
选题与预估计
问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。
问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。
问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。
问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。
问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。
你看看这个行不?【摘要】离散数学是计算机科学基础理论的核心,本文介绍了离散数学在人工智能、数据结构、数据库等方面的应用,显示了离散数学在计算机科学中的重要性。 【关键词】人工智能 二叉树的遍历 数据库 1 引言 离散数学是计算机专业的核心基础课,它在计算机科学中有着重要的应用。它是计算机专业课《数据结构》、《操作系统》、《编译原理》、《数据库系统原理》和《数字逻辑》等课的必备基础,因此离散数学是掌握计算机科学理论基础的重要数学工具。本文正是从这一角度出发,介绍离散数学在计算机科学中的重要应用。 2 离散数学在计算机学科中的应用 数理逻辑在人工智能中的应用 人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。数理逻辑包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。由此可见数理逻辑中重要的思想、方法及内容贯穿到人工智能的整个学科。 图论在数据结构中的应用 离散数学在数据结构中的应用主要是图论部分在数据结构中的应用,树在图论中占着重要的地位。树是一种非线性数据结构,在现实生活中可以用树来表示某一家族的家谱或某公司的组织结构,也可以用它来表示计算机中文件的组织结构,树中二叉树在计算机科学中有着重要的应用。二叉树共有三种遍历方法:前序遍历法、中序遍历法和后序遍历法。 前序遍历法:如果二叉树为空,则返回。否则(1)访问根节点(2)前序遍历左子树(3)前序遍历右子树,得到前序序列。 中序遍历法:如果二叉树为空,则返回。否则(1)中序遍历左子树(2)访问根节点(3)中序遍历右子树,得到中序序列。 后序遍历法:如果二叉树为空,则返回。否则(1)后序遍历左子树(2)后序遍历右子树(3)访问根节点,得到后序序列。 通过访问不同的遍历序列,可以得到不同的节点序列,通常在计算机中利用不同的遍历方法读出代数表达式,以便在计算机中对代数表达式进行操作。 集合论在数据库系统理论中的应用 集合论是离散数学中极其重要的一部分,它在数据库中有着广泛的应用。我们可以利用关系理论使数据库从网络型、层次型转变成关系型,这样使数据库中的数据容易表示,并且易于存储和处理,使逻辑结构简单、数据独立性强、数据共享、数据冗余可控和操作简单。当数据库中记录较多时,集合中的笛卡儿积方便了记录的查询、插入、删除和修改。 代数系统在通信方面的应用 代数系统在计算机中的应用广泛,例如有限机,开关线路的计数等方面。但最常用的是在纠错码方面的应用。在计算机和数据通信中,经常需要将二进制数字信号进行传递,这种传递常常距离很远,所以难免会出现错误。通常采用纠错码来避免这种错误的发生,而设计的这种纠错码的数学基础就是代数系统。纠错码中的一致校验矩阵就是根据代数系统中的群概念来进行设计的,另外在群码的校正中,也用到了代数系统中的陪集。 离散数学在生物信息学中的应用 生物信息学是现代计算机科学中一个崭新的分支,它是计算机科学与生物学相结合的产物。目前,在美国有一个国家实验室Sandia国家实验室,主要进行组合编码理论和密码学的研究,该机构在美国和国际学术界有很高的地位。另外,由于DNA是离散数学中的序列结构,美国科学院院士,近代离散数学的奠基人Rota教授预言,生物学中的组合问题将成为离散数学的一个前沿领域。而且,IBM公司也将成立一个生物信息学研究中心。在1994年美国计算机科学家阿德勒曼公布了DNA计算机的理论,并成功地运用DNA计算机解决了一个有向哈密尔顿路径问题,这一成果迅速在国际产生了巨大的反响,同时也引起了国内学者的关注。DNA计算机的基本思想是:以DNA碱基序列作为信息编码的载体,利用现代分子生物学技术,在试管内控制酶作用下的DNA序列反应,作为实现运算的过程;这样,以反应前DNA序列作为输入的数据,反应后的DNA序列作为运算的结果,DNA计算机几乎能够解决所有的NP完全问题。 3 结论 现在我国每一所大学的计算机专业都开设离散数学课程,正因为离散数学在计算机科学中的重要应用,可以说没有离散数学就没有计算机理论,也就没有计算机科学。所以,应努力学习离散数学,推动离散数学的研究,使它在计算机中有着更为广泛的应用。 参考文献 [1] 耿素云,屈婉玲,离散数学[M].北京:高等教育出版社<1998. [2] 左孝凌,李永监,刘永才编著.离散数学[M].上海:上海科学技术文献出版社,2004. [3] 朱一清.离散数学[M].北京:电子工业出版社,2004
首先,离散数学主要包括四个方面逻辑学集合论,代数结构,图论,直接用来解决一些实际的问题的,比较少,因为它是一门计算机专业的理论基础课,解决实际问题,你看哪些方面的问题了, 下面我举一些例子: 1 资料结构,这是计算机专业的一门重量级课程,而离散数学里里面的图论,就是资料结构里面图和树的理论基础!像一些经典的演算法,在资料结构里会学到,其实,它们在图论里就被研究得很透! 2。关系资料库,不用说,它的理论基础----关系代数,就是离散数学的一个分支! 3。在计算机网路原理里面,有一些路由选择演算法之类 的,像最短路径演算法等,都是离散数学里图论的应用,都是一些经典的演算法! 4。更深层次的,像人工智慧等学科,都是以离散数学做为理论基础的, 所以,离散数学是计算机的一个理论基础, 至于你在程式设计中解决的问题,那应该是资料结构和演算法的应用,因为这门课就是离散数学的理论,加上在计算机上的储存以及操作实现的~~
电路、数电、模电、讯号与系统、通讯原理、高数、复变函式等等
1.掌握数学、物理等方面的基本理论和基本知识; 2.掌握电子资讯科学与技术、电脑科学与技术等方面的基本理论、基本知识和基本技能与方法; 3.了解相近专业的一般原理和知识; 4.熟悉国家电子资讯产业政策及国内外有关智慧财产权的法律法规; 5.了解电子资讯科学与技术的理论前沿、应用前景和最新发展动态,以及电子资讯产业发展状况; 6.掌握资料查询、文献检索及运用现代资讯科技获取相关资讯的基该方法;具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。
看你怎么选择,我们专业有点倾向于计算机程式设计方面,在这方面女生还是很好的,毕竟女孩子心细。不过公司选职员的时候女生不占优势,因为有些的公司只要男的,因为要去野外或者海上工作女生吃不了这苦,但如果你找到一个蹲办公室的工作也是挺好的工资也高,能出国更好
到万方这类论文资料库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的
光资讯科学与技术是中大的一个名牌专业,但是我觉得就本科来说就业不是很好,中大真正强势的专业是岭南学院、管理学院、资讯学院还有医学院的专业,我的本科专业也是中大的名牌专业(资讯计算科学),但我也不觉得有什么强势 这是我作为又是中大的又是福建的过来人给你的一点建议。 还有中大在福建历年的情况见下面:
光资讯科学与技术是大学本科理工学科的一个专业,现更名为光电资讯科学与工程,属于工学电子资讯科学类。 根据2012年教育部本科专业目录调整,原属于电子资讯科学类的光资讯科学与技术、光电子技术科学专业与原属于电气资讯类的资讯显示与光电技术、光电资讯工程、光电子材料与器件五个专业统一更名为光电资讯科学与工程,归属于电子资讯科学类。 其培养目标是具有扎实的数学、物理、电子和计算机的基础知识,系统地掌握光学资讯处理技术、现代电子学技术和计算机应用技术的基本技能,能在光通讯、光学资讯处理、以及相关的电子资讯科学、电脑科学等资讯科技领域、特别是光机电算一体化产业从事科学研究、产品设计和开发、生产技术或管理的面向二十一世纪的高阶专门人才。 主干课程 高等数学、线性代数、概率论与数理统计、普通物理、普通物理实验、机械制图、机械设计基础、数学物理方法、计算机原理及应用、计算机程式设计、电路理论、类比电子线路、数字逻辑电路、讯号与线性系统、自动控制原理、电子测量技术、电磁场理论、数字讯号处理、数字影象处理技术、全息技术、光学基础、工程光学、光学设计、光资讯处理、镭射原理、量子力学、光电技术、电工学、电磁学 、光电子技术 、光纤通讯、光电检测技术等。 就业前景 “光资讯科学与技术”专业就业领域—— 光电子产品与技术领域 全世界光电子技术产业的市场规模己达1万亿美元。国外光电子产业主要在美国、西欧和日本。中国的光电子技术产品市场的年增长率,始终保持在两位数的高速增长势头。随着资讯光电子技术、镭射加工技术、镭射医疗与光子生物学、镭射全息、光电感测、显示技术等光电技术的快速发展以及光电科技与数字技术、多媒体技术、机电技术等领域的结合与渗透,中国已经形成以下市场可观、发展潜力巨大的光电子产业。
这个是新浪上的一段话,介绍电子资讯科学与技术 业务培养目标:本专业培养具备电子资讯科学与技术的基本理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子资讯科学与技术、电脑科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术管理工作的电子资讯科学与技术高阶专门人才。 业务培养要求:本专业学生主要学习电子资讯科学与技术的基本理论和技术,受到被过滤广告 科学实验与科学思维的训练,具有本学科及跨学科的应用研究与技术开发的基本能力。 毕业生应获得以下几方面的知识和能力: 1.掌握数学、物理等方面的基本理论和基本知识; 2.掌握电子资讯科学与技术、电脑科学与技术等方面的基本理论、基本知识和基本技能与方法; 3.了解相近专业的一般原理和知识; 4.熟悉国家电子资讯产业政策及国内外有关智慧财产权的法律法规; 5.了解电子资讯科学与技术的理论前沿、应用前景和最新发展动态,以及电子资讯产业发展状况; 6.掌握资料查询、文献检索及运用现代资讯科技获取相关资讯的基本方法;具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 主干学科:电子科学与技术、电脑科学与技术 主要课程:电路分析原理、电子线路、数位电路、演算法与资料结构、计算机基础等 主要实践性教学环节:包括生产实习、毕业论文等,一般安排10周~20周。 主要专业实验:物理实验、电子线路实验、数位电路实验等 修业年限:四年 授予学位:理学或工学学士 我本科是学的电子与通讯工程,感觉电子方面的要学会模电,数电,数电主要向pcb板子,先画2层的,逐渐向四层六层的靠拢,然后微控制器(要学的微机原理),dsp,fpga,arm方向发展,这个是对工作有帮助的 如果是学术的话,讯号与系统,数字讯号处理,微波技术,讯号检测预估计,现代通讯原理在搞理论的方面有会用到的。
先学一遍力热声电光电磁学 然后是一遍原子物理 量子力学 电动力学 热力学等等 数电模电 最后是讯号与线性系统、自动控制原理、电子测量技术、数字讯号处理、数字影象处理技术、全息技术、光学设计、光资讯处理、镭射原理等
前两天看了个数据,你们这个专业的供求比是1:8,很是让人羡慕,前景大好
离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课 一般是解决最优化问题,比如很多有联系的事情,按照如何顺序在做能达到用时最少,效果最好。主要用在工程领域和计算机领域。 定义:离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 应用:逻辑与证明,算法,计算方法与分类原理,循环关系,图论,树,网络模型,布尔代数与组合电路,自动化、语法与语言,计算几何。离散数学课程所涉及的概念、方法和理论,大量地应用在 “ 数字电路 ”、“ 编译原理 ”、“ 数据结构 ”、“ 操作系统 ”、“ 数据库系统 ”、“ 算法的分析与设计 ”、“ 软件工程 ”、“ 人工智能 ”、“ 多媒体技术 ”、“ 计算机网络 ” 等专业课程以及 “ 信息管理 ”、“ 信号处理 ”、“ 模式识别 ”、“ 数据加密 ”等 参考资料: 给老师正浦靠费的 《离散数学》是理工科高等院校计算机专业的重要基础课程,它不仅为后续课程——数据结构、操作系统、编译原理、数据库原理、人工智能等做必要的理论准备,而且在培养学生的创新思维、创新能力和综合素质方面有其独特的作用。 到20世纪下半叶乃至21世纪,随着电气时代乃至计算机时代的来临。对直接与计算机打交道的越来越多的人群来说,最重要的数学趋势不再是以微积分为代表的连续数学,而是以图论、组合学、数论、代数、概率论、运筹学与控制论、数理逻辑等为核心内容的离散分析,也就是离散数学。因为计算机是“离散地”处理、计算、安排、存储、调拨、配置,用“离散”近似(可做到相当精确)逼近“连续”。从中学到大学,从数学专业到理工科专业,离散数学的课程和内容逐步与传统的突出连续数学的课程及内容分庭抗礼,起着越来越显著的作用。 最实际的应用比如说最短路径问题,就要用到离散的图论知识,在物流方面应用广泛。求商场最佳进货量,随不是直接的离散问题,也要用到离散的思想。此外,凡是涉及计算机、数值分析的地方就少不了离散数学。离散数学已经越来越多的影响着人类的生活。
关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.
组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
图论方面的话可以投的SCI不是很多,主要是离散数学、Graphs andCombinatorics、ARS Combinatoria、还有Frontiers of Mathematics inChina。
同学们可以投一些影响因子不是太高的杂志,这样可能会容易一些 。Grochow 是越来越多的研究人员之一,他们指出在大数据中寻找联系时,图论有其局限性。图将每一种关系表示为二元组或成对的交互。
然而,许多复杂的系统不能单独用二元连接来表示。该领域的最新进展显示了如何向前发展。考虑尝试建立一个育儿网络模型。显然,每个父母都与孩子有联系,但养育关系不仅仅是这两个联系的总和,因为图论可能会对其进行建模。尝试模拟同行压力等现象也是如此。
ACS Nano图论的纳米网络材料结构分析
许多具有优异性能的材料,可构造有渗透纳米网络(PNNs)。这种快速扩展的复合材料和纳米多孔材料的设计,需要一种统一的方法来描述它们的结构。
然而,它们复杂的非周期结构很难用传统的方法来描述。另一个问题是缺乏计算工具,使人们能够捕获和枚举这些复合材料中典型的随机分枝原纤维的模式。
如果这两个不行,你可以把这两篇论文综合一下哦