大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究
教育理解:教育大数据的意义维度原创:吴南中夏海鹰等世界在你手中,概念的创造图摘要:文章聚焦什么是教育理解、什么是教育理解、什么是教育理解三个问题,探索了教育大数据对教育理解的意义。围绕这三个问题,文章首先对教育理解进行了界定,指出教育大数据视角下的教育理解是教育工作者围绕“文本”释义把握教育育人意义的过程。 随后,文章指出,教育理解是教育大数据支撑下教育创新发展的新动能。最后,文章从智能教育生态布局、教育大数据技术发展、“理解资源”建设、教学过程优化等四个方面探讨了基于教育大数据的教育理解实践策略此外,还讨论了教育理解的局限性,认为教育大数据伦理和教育大数据技术分别限制了教育理解的深度、广度。文章的研究旨在提高教育工作者依靠教育大数据进行教育理解的能力。关键词:教育理解; 教育大数据; 学习过程; 视域融合自教育学诞生以来,教育学科学化成为教育研究者孜孜不倦的追求,教育学史上许多著名教育家试图通过量化来摆脱教育学研究中的纯洁性思辨,Comenius,Herbart,Meumann,Thorndike,OConnor但是,有些教育行为无法用准确的工具量化。 例如,学习者对人的精神、心灵等问题的内在理解、反思性感知等,很难找到有说服力的证据,只能从输入、输出的角度来判断教育的效果,而教育过程中的转换机制如何不清晰在此背景下,极难追求教育理解理论所表达的“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”等[1],甚至具有一定的幻想性和迷惑性,有“玄虚”之嫌同时,由于缺乏真正的理解,教育“唤起”学习者的效用发挥和时机选择也在一定程度上受到了影响。随着学习者的学习环境从传统的物理课堂向在线领域和虚实融合环境的转变,以及可穿戴设备和情境感知技术在教育教学中的应用,学习者的行为和特征逐渐具备了数据化的能力。研究者们对于如何捕捉、分析、利用学习和生活各方面的数据展开了大量的研究,能够有效地挖掘各种隐藏的、无法测量的教育关系,将原本的“黑匣子”变成一种“看不见”“就像医学上有‘核磁共振成像’技术一样”[3],学习过程是可以测量的。本研究聚焦教育理解是什么、教育理解是什么、教育理解是什么三个问题,探索教育大数据对教育理解的意义。灯泡之间看起来是灰色的一什么是教育理解:教育大数据视角1理解与理解教育在西方,理解来自解释学。《圣经》由不同时期的不同文本组合而成,用同一意义体系来阐释其文本内涵,会产生相互矛盾的解释。为了避免这种现象,Schleiermacher提出了他的“普遍解释学”思想。 即“先划分理解过程和理解对象,再区分他人的理解和辩证理解”[4]。在Heidegger[5]看来,只有在生活的“周围困境”中才能产生有意义的理解,个人的文化背景、社会经验、传统观念等都会干扰这种理解。在中国,根据《辞海》的解释,理解是指“应用现有知识暴露事物联系、认识新事物的过程,其水平因暴露的联系性质和人的认知能力而异。[6]但《朗曼当代英语词典》对“理解”有不同的解释,更多地体现了对理解的行为和判断。在此基础上,诠释学提出“理解是基于历史多元性主体对话结构的实践过程”[7]、“富有思想的人比缺乏思想的人更能展现出对他人在具体环境下的真正理解”[8]。在这些“理解”解释的支撑下,学者们开始用“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”来描述理解,并据此解释教育现象,形成了理解课程观。将理解课程观应用于教学,可以说是理解教育[10]。在理解教育的影响下,教育者不是全部强加于作为学习主体的学习者,而是通过积极的支持和指导,通过“唤起”学习者来使教育发挥作用。同时,“唤起”释放人们对目标、事实、记忆、概括、实验、真理探索的分析和叙述,以学习情景为教学要素的关键,构建与学习情景形成相关的“学习场域”、“学习空间”、“学习环境”也成为教育研究关注的重点围绕创造学习者的学习环境等的后续教育、教育行为,以学习者的现有状态,也就是Gadamer[11]中所说的“偏见”为起点。“偏见”影响理解效率和效果——现代教学理论有类似的观点,表现为以前的经验和知识对教学设计有决定性的作用,“混合学习中教学设计的起点是找人”[12]。那么,如何找到学习者呢? 如何把握学习者的学习状态? 如何判断学习者的认知风格? 教育大数据找到了解决这些问题的方法。机电一体化2教育大数据和教育理解大数据是继云计算、物联网之后的重大技术变革。在美国,大数据被认为是与“信息高速公路”具有同等地位的重要科技行动[13]。大数据的价值通过“量”与“全”的占有,进行各种数据的交换、整合、分析,发现新知识,创造新价值,带来大知识、大科技、大效益、大发展[14]。在教育领域,教育大数据通过对教育过程数据的捕获和记录、分析和利用,解决教育过程中课程资源建设、学习环境的形成、教育科学评价和教师能力的提高等问题。教育的根本作用是育人,表现方式是教育,教育教学的一切活动都是以“育人”为中心派生的。因此,教学理解是以学习者为对象的理解,应该涵盖学习者对自身、课程、教学过程、评价等的认识,并在此基础上设计相应的教学环节,实现育人效果。可以推断教育教学问题的本源是学习者理解能力的不足。教育大数据通过挖掘数据,帮助教育工作者直观、准确地理解和认识教育及其过程,掌握学习者的“偏见”和“唤起”条件,精准跟踪学习者的情感价值观、认知能力、知识结构和技术技能的变化,达到“沸沸扬扬”在教育大数据的支持下,教师可以更积极地调动资源,改变交流方式,实施教育支持,成为“精神交流盛宴”的主体。在教师的积极作用下,师生冲突状态转变为融合状态,师生精神水平提高,学习者自主学习能力、创造能力、自我适应能力也显著提高。结合以上分析,本研究重新界定了教育理解——教育大数据视角下的教育理解是教育工作者围绕“文本”的释义。 “文本”是本研究中教学过程中的多种载体,是呈现给学习者后可以通过视觉、听觉、触觉等感知到的内容。 (是把握教育育人意义的过程,其内涵主要表现在以下四个方面。 )教育理解是教育实践导向的内在调控机制。教育理解活动及其结果是对教育实践产生促进作用的内因,理解的实践导向是理解不是主观臆断,不是融于自我意识的怪影和荒诞想象之中,而是基于教育大数据相关性的各种理性预测,调动各种资源教育理解是基于历史的理解。学习者“偏见”中的“以前的经历”等因素,可以在历史中找到答案。但历史不是一部空白的历史,而是联系着过去的种种,是现实的客观存在和对未来的显现。由于历史的不可避免性和选择性,同一门课在不同的时间会产生不同的理解。 学习者既不能脱离历史创造条件,也不能自然而然地摆脱历史的制约。教育理解是有价值的理解。教育大数据要通过对学习者的全域考察,体现时代精神多元化包容的特点,教育理解也要从时代精神中找到调整的方向,促进教育理解意义的不断生成。教育理解是一种动态的理解。教学实践是教育工作者与学习者的互动,师生在互动过程中有新的体会,教学理解也随着对话的进一步深入而实现水平的提高。二什么是教育理解:教育大数据支撑的教育创新发展新动力2017年6月20日,每日科技网报道了阿里巴巴在支付上脱离手机的技术。 他认为,这一技术开创了新“颠覆”——这次“颠覆”的主要技术,是物联网和图像识别技术。其实,技术尤其是信息技术已经受到各个国家的关注,如美国未来学家Rifkin[15]在《第三次工业革命》一书中提出了具有影响力的“五大支柱学说”。 英国《经济学家》杂志发表《专题报告》,提出了“制造业数字化”第三次工业革命的特点[16]德国提出了“工业战略”; 我国提出了“中国制造2025计划”等。在教育研究者看来,新工业革命需要关注人才培养的理念、目标、内容、方法与途径、体系重点等系列化转型[17]。 核心是实现教育的根本任务,“让学生意识到自己是同一个生物圈的一部分,从而思考、活动身体”。 具体体现在:破除批量化、标准化、固定化育儿理念,实行个性化、定制化、分散协同化,注重人的个性化和差异化发展,培养创新意识、合作意识、发展意识、服务意识、终身学习能力、社会情绪能力,注重人与人之间的关怀使这些变化发生,其根本要求是更加关注人,这也是理解教育的出发点。1创新型人才的培养需要教育大数据的紧密支撑。 “创新型人才”是指具有创新意识、创新精神、创新思维、创新能力并能取得创新成果的人才。( 18 )从实践看,创新行为是在内在优势和外部环境的双重影响下,结合知识体系和环境体系的内外作用而产生的,而问题发现能力、批判性思维、资源整合能力、问题解决能力是创新行为发生的关键。理想的创新型人才教育,需要教育者首先明确不同个性学习者的不同兴趣爱好和不同的学习需求,并提供相应的学习内容和方式,引导学习者正确分析、勇于尝试,不断地将学习过程过渡到“学习型创造”过程。随着传统课堂学习向混合学习、在线学习的转变,更多的学习行为会通过大数据出现在教师身上,教师可以通过大数据找到创新人才的发展需求,提供相应的学习资源,设计特定的教学环境。在教育大数据的紧密支撑下,创新型人才培养的客观规律和总体模式将被人们更加合理、准确地认识。2文化多样性需要通过教育大数据捕捉学习者的移情状态。 不同种族、宗教、语言群体之间的联系日益紧密,原本封闭的民族文化受到冲击,学习者对各种事物有着多元的理解。 在教育实施过程中要抓住学习者的移情状态,实施“入心”教育。在传统的教学范式中,研究者把这种基于学生状态进行教学的教学设计称为“生成式”设计。教育大数据通过情境感知装置将学习者的“心动”转化为实时“可视”,让教师在此基础上有目的地呼叫资源、激发兴趣、调节情绪,让学生不再是课堂上的“弃儿”。 师生在对话中产生共鸣,产生教育理解所需的“视域融合”。3复杂的新型人才培养需要教育大数据提供过程的支撑,Piaget[19]指出,传统认知论只重视高级认知,即只重视认知的最终结果,看不到认知的建构过程。与此相似,量化数据在传统教学中的主要作用是判断“输入”与“输出”的关系。换句话说,就是判断通过量化数据,提供什么样的教育,得到什么样的结果,通过教育输出了什么样的可测量的结果,对于输入后对学习者的作用过程不知道。即使在现代教育中,人才培养的实际效果也没有明确的证据有力地说明教育创新的合理性和科学性。教育大数据通过描述学习者的全方位数据,用教育大数据支持的“分析”替代了教育过程的复杂性。 教师为学习者创造的视野不是教师想象中的视野,而是基于教育大数据的“可视化”视野。 师生之间出现共鸣,甚至发生视域的融合,在融合过程中引导学习者的学习、工作、人、发展。4人才评价的成长潜能评价需要为教育大数据提供反馈,评价具有世俗意义的人才的“选拔”功能,既是教育理解的目标,也是下一阶段理解产生的基础。以考核为手段的评估,缺乏评估所需的全面性、准确性、可靠性的教育大数据提供了准确记录学习过程、学习效果、学习效率的功能,在一定程度上可以衡量学习者的潜能。在此基础上,教育大数据从“学习量”到“学习能力”、“学习效率”等全面反映学习者潜能的数据进行评估,帮助教育工作者构建个性化的支持机制,最大限度地发挥学习者的潜能。同时,用人单位或较高级别的教育机构也可以通过教育大数据全面考察学习者的状态、特征和发展潜能,选拔必要的合适人才,实现人才选拔功能。大数据三、如何进行教育理解:基于教育大数据的实践策略“拥抱新范式,总是需要重新定义相应的科学。[20]我们在思考教育大数据理解价值的同时,要基于以下教育大数据实践策略,指导教育实践改革,促进教育研究范式的转变: 1利用教育大数据促进教育理解以发挥教育大数据的理解价值不是一个不言自明的话题。相反,教育大数据理解效用的发挥需要几个前提条件。在数据获取上,只有从传统课堂场转向面向未来的“虚实融合场”,最终目标转向“智慧学习场”,才能及时捕捉教育大数据。“智力学习场”的目标是建立可感知学习的环境,以识别学习者的特征,提供适当的资源和方便的交互工具,记录学习过程,评估学习成果,最终促进有效的学习[21]。利用教育大数据捕获技术和设备,设置相应的采集条件,配置便于获取教育大数据的智慧教育生态,为后期的数据捕获、利用和创新提供数据支撑,可以更好地发挥教育大数据的理解价值。2发展教育大数据技术,支持教学过程与学习者视域融合的商业大数据特征清晰,数据模型简单,应用价值清晰。教育大数据要产生应用价值,需要将自然语言、外部环境、人文基础、资源特征等所有相关因素转换为形式逻辑,通过转换体系以简单易行的方式为教师提供讲解文本、图表等支持。其中,教育大数据技术起到的作用非常重要,因此:开发情境感知技术和设备,准确掌握学习者的生命体征变化数据和学习过程相关变化数据等; 探索连接学习系统的智能穿戴设备与学习状态之间的联系,掌握学习者的情绪变化(表现为心率、肢体语言、脑电等变化),帮助教师对学习者的理解。 探索建立基于大数据的及时反馈机制,通过调整教学方式,促进学习者回到学习的“舒适境界”,使教师和系统能快速感知学习者的适应度。3依托教育大数据,建设“资源理解”“资源理解”,本质是学习者乐于学习的资源,是能够与学习者视域融合的资源,是基于学习者的生活经历、人文素养、期望和想象力等个人状态,通过与资源的交流而构建的“学习世界”“资源理解”的构建可以从以下几个方面入手:教育大数据对学习者的“期望”理解度是“资源理解”构建的基础。教育大数据是教育工作者提高资源“生命质量”的有效支撑。学习者在与资源交互过程中的动作特征、交互特征、过程特征和反馈特征等可以通过数据方式来捕捉,哪里是难点,需要更多的案例来帮助学习者理解; 哪里有点无聊,就需要增加资源趣味性哪里简单,就需要提高认知负荷水平等等——这些问题都可以通过流程数据,以仪表的方式通过平台反馈给资源建设者挖掘促进理解的“空白点”。提高“理解境界”,需要设置“空白点”引发学习者的“失落”情绪,从而激发探索、填充、完善资源的意愿,提高理解水平。但是,如何发现这样的“空白”,考验着教育者的智慧。 ——一般来说,热潮兴起时的“突然冷却”、平凡奇特时的“突然脱落”、兴致勃勃时的“突然停滞”等都有“空白”的效果。认清这些状态,在教育大数据技术进步的前提下,具有更多的可能性。教师应该依托教育大数据,通过“空白点”将认知范畴内的理解水平与学习者相关联,建立“理解资源”。4发挥教育大数据精准支撑,优化教学过程教育大数据通过支持教学过程优化对教学理解产生作用:教育大数据帮助教师正确认识教学过程。理解教育理念后,认为教学过程是课程专家、教师、学习者、技术人员在特定场域进行的创新协同活动。通过教育大数据技术,可以完全展现教育过程的直接、客观、准确、真实等特点; 通过严密严密的逻辑推理和联动的云数据,教师对学习者在学习过程中的认知变化、能力变化、情感变化等及其影响因素的认识也更加合理,这为优化教学过程提供了条件。教育大数据为教师如何介入、何时支持提供了依据。教学文本性质、认知方式、学习者情境不同,理解过程会产生偏差,教师需要嵌入一定的支持以纠正偏差,形成共识。教育大数据可以及时捕捉无节奏的键盘敲击、焦虑的斜视、与学习者的无序互动等各种“非正常信息”,这些信息有助于教师有意识地调整教学,开展针对性的学习支持。教育大数据可以改变教育理解的“主观性”,促进基于量化的客观判断。亚里士多德认为,理解只是一种判断,它“不是永恒存在和永恒不变的,而是引起怀疑和关怀的”[22]。由于理解的主观性模糊了学习输入,教育大数据需要收集相应的信息,基于现有特征判断教育干预和支持是否合理。总之,教育大数据的理解意义在于找到人,看清人的状态,提供相应的资源、过程等学习支持,可以优化学习过程,促进理解的发生。大数据会从连接的移动设备上分析大量数据。白色背景上的手智能手机四教育理解限度:伦理与技术双重约束1教育大数据伦理:制约教育理解的深层教育数据伦理是对教育数据产生、收集、存储、分析利用过程中应具有的道德信念和行为规范的理性审视[23]。在教育理解领域,教育大数据的基本运作方式是收集学习者关于学习过程、社会生活、身体状态、精神情感等方面的数据。随着数据采集技术的飞速发展,数据在“洞察”学习者学习过程、提高学习者理解水平的同时,“也是学习者隐私失控的开始”[24]。 例如,教育大数据的大规模使用会泄露学习者的隐私,永久存储的数据可能会对学习者进行固化标记,数据驱动模式容易导致学习者潜能的挖掘不充分[26]等。因此,教育大数据的发展需要在道德和秩序两个体系的规范要求下发展,需要遵循安全原则、公平原则、知情同意原则等伦理标准,避免数据采集的无序; 对大量数据的挖掘要保持一定的敬畏,不要越过伦理的“底线”。2教育大数据技术:广泛制约教育理解的教育数据技术是教育大数据发展和应用的“新引擎”,但现有教育数据技术存在情境感知能力不强、生命体征识别能力不高等不足。另外,教育领域在教育大数据方面的技术研发投入较少,限制了大数据技术对教育的发展,制约了教育大数据理解价值的发挥。总的来说,教育理解的价值在于提供更好的教育,教育大数据技术的出现支撑着教育理解的加深。值得注意的是,教育大数据技术作为工具性的存在,无论提供多么全面的学习者信息,捕捉数据的技术多么强大,实现了多么准确的反馈,都不能替代教师对学习者的理解,更不能替代教师和教育团队的自我理解尽管如此,教育大数据还是可以为教育理解的产生和理解水平的提高提供技术支撑,帮助师生实现自我理解、自我超越,从而在教与学上出现更大的突破,实现个人的生命意义。虚拟形象教育软件参考文献[1]McTighe J, [ m ].Alexandria, VA:associationforsupervisionandcurriculation 1999:19.[2] [ 26 ]吴南中、夏海鹰.教育大数据范式的基本理念与建构策略[J] .电化教育研究,2017,2017 2018、2019、2018, 2019]涂子沛.大数据:正在到来的数据革命,以及政府、商业,2013:12,33.[4]洪汉鼎.诠释学——其历史与现代发展[M] .北京:人民出版社,2001:74.[5] 靳玉乐.理解教学[M] .成都:四川教育出版社,2006:3.[8] (加)马克斯范梅南著.李树英译.教学机智——教育智慧的含义[M] .北京:教育科学出版社,2001:4454 (3) 29 )8)3-8.[11] (德)汉斯格奥尔格加尔达马着.洪汉鼎译.真理与方法——哲学解释学的基本特征)上1999:355,28.[ 12 ]吴南中.混合学习视域下的教学设计框架重构3——兼教学[5]:18-24.[13]何克抗.大数据面面观[J] .电化教育研究孙豫宁译.第三次工业革命[M] .北京:中信出版社,2012:32.[ 16 ] Rothko 2011 )鲍成中.第三次工业革命与人才培养模式变革[J] .教育研究,2013,2010 (4- 9,43.[ 18 ]任飏,陈安.论创新型人才及其行为特征[J] .教育研究,2017, (1) 149-153.[ 1995:3.[20] (美) .库恩着.李宝恒,纪树立译.科学革命的结构( m ) .上海:上海科学技术出版社,1980:44.[21]陈卫东,叶新东(5) 42-49.[22] )古希腊)亚里士多德着.廖申白译.尼各马可伦理学( m ) .北京:商务印书馆,2003:183.[23]刘三娘牙,杨宗凯,李卿.教育数据伦理(大本文仅用于理念共享,无商业用途。 尊重原作者的创作,如有侵权立即删除。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:
大数据对高校教育的推动作用论文
当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。
1大数据 发挥出在高校教育的发展中的推动作用
高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。
2大数据与高校教育之间的联系
大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。
3大数据在推动高校教育发展过程中遇到的问题
不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。
4提升大数据推动高校教育有效性的对策
针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。
5总结
在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。
参考文献 :
[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).
[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).
[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).
大数据意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]
大数据的价值体现在以下几个方面:
(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
(2)做小而美模式的中小微企业可以利用大数据做服务转型;
(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:
(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
(3)分析所有SKU,以利润最大化为目标来定价和清理库存。
(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
(5)从大量客户中快速识别出金牌客户。
(6)使用点击流分析和数据挖掘来规避欺诈行为。
142 浏览 2 回答
267 浏览 2 回答
197 浏览 4 回答
224 浏览 3 回答
295 浏览 3 回答
96 浏览 2 回答
145 浏览 2 回答
109 浏览 3 回答
84 浏览 3 回答
312 浏览 2 回答
258 浏览 4 回答
145 浏览 3 回答
82 浏览 2 回答
333 浏览 4 回答
210 浏览 2 回答