首页

> 学术期刊知识库

首页 学术期刊知识库 问题

大数据应用教育论文参考文献

发布时间:

大数据应用教育论文参考文献

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据时代下高中数学教学探讨论文

摘要: 大数据时代的到来,为人们的生产生活带来了极大的便利,也为教育教学的创新以及发展带来很大的影响。因此,在大数据时代下,要分析大数据的相关概念,然后对大数据时代下的高中数学教学方式的创新以及应用进行研究,以此来提高高中数学教学的有效性。

关键词: 大数据时代;高中数学;教学方式

信息技术的发展促使了大数据时代的到来,不仅增加了知识获取的途径,也改变了传统的学科教学方式,对促进高中数学教学改革的推进具有重要影响。因此,在大数据时代下,高中数学教师要利用大数据的技术优势,对现存的教学模式进行改革,突出数学教学的时代性,使学生在数学学习中既能够获得相应的知识,还能够树立正确的价值观念,促进高中生数学综合素养的形成,从而促进高中数学学科的健康发展。下面本文将对其进行详细论述。

1大数据相关概念

第一,大数据概念。数据是知识的来源,也是信息的一种记载方式。随着社会的发展和科学的进步,数据数量不断增多,对数据进行记录、测量以及分析的范围也就不断扩大,这标志着人类已经获得越来越多的知识和信息。大数据可以从宏观和微观两个角度去理解,多数学者都是从宏观上对大数据概念进行定义的,即用新的处理模式提高数据出来的执行力,洞察能力以及海量信息的优化能力。大数据具有数据信息量大、种类多种多样、真实性以及实效性强等特点。

第二,大数据分析概念。大数据分析简单来说就是要对大规模的数据进行科学分析,而对这些庞大的数据资源进行分析最根本的目的就是要发现和总结出这些数据中存在的规律以及模式,然后再利用数据的动态性特征去预测事物的未来发展趋势。

2大数据时代下高中数学教学方式的应用

利用大数据转变教师的教学角色

第一,应用大数据技术为教师教学模式的创新提供了机会。大数据时代的到来,传统的教学方法弊端逐渐显现,不仅体现出了与现代社会的不适应,也影响了学生学习积极性的提高。因此,在大数据时代,教师要利用大数据技术开展例如合作探究、个性化教学等多样化的教学方式,丰富课堂教学形式和内容,使学生不再死板地接受学习内容,而教师也能够根据学生的不同阶段开展针对性的.教学活动。教师教学角色和教学模式的转变,强调了学生在课堂中的主体地位,对活跃课堂气氛,提升课堂教学的有效性具有重要作用。例如:在学习“集合”这节课时,教师就可以采用合作探究的教学方式。首先,结合学生的差异性,将学生分成不同的小组,然后设计不同的问题组织学生进行探究,如:①用什么对集合进行表示?可以用一个元素表示集合吗?集合与元素之间有什么关系呢?②集合都有哪些特征呢,结合具体题目进行判断。之后,小组之间对研究结果进行互相交流。再后教师设计突出本节课重点的习题,给学生锻炼的机会。通过这样的教学方式,不同的学生组织到一起集思广益,互相帮助,不仅有利于促进学生思维的发散,还转变了教师的教学角色,提升了课堂学习效率。

第二,应用大数据技术对学生的学习情况进行深入了解。在传统的课堂教学形式下,教师过于侧重学生学习成绩的提升,忽视对学生的了解,导致教学针对性不强,影响教学效果。通常情况下,教师对学生了解是通过考试以及随堂测试的形式进行侧面分析,但这种分析得出的结果并不准确。但在大数据时代,利用大数据技术教师能够对学生的真实情况进行挖掘,然后根据学生之间的个性差异,对学生进行充分的了解,同时教师利用网络技术能够对学生的兴趣点和薄弱点进行准确判断,从而使自己的教学活动与学生的学习需求相吻合,突出数学教学的针对性。

利用大数据发挥学生的主体作用

第一,应用大数据提升学生的学习兴趣。在以往的教学方式下,学生是知识的接受者,部分教师为了提高教学效率甚至一味地向学生进行知识传输,殊不知这种填鸭式的教学方式,不仅无法激发学生的学习兴趣,还会造成学生的抵触情绪,对学习产生厌烦心理,进而影响数学学科教学效率的提升。因此,在大数据时代下,要充分发挥大数据的优势,利用大数据技术去激发学生的学习兴趣,丰富数学课堂的内容,使学生产生主动求知的欲望,能够积极主动地参与到教师组织的教学活动中来。大数据技术的具体应用可以从以下几个方面进行。首先,教师可以利用计算机平台设计预习内容,然后学生能够通过计算机平台自己完成教师布置的习题,教师之后可以借助大数据进行数据分析,这样教师在授课之前就能够找到学生学习的弱点以及难懂点。例如,教师可以利用大数据对学生在“函数”知识中存在的问题进行分析,然后了解到学生易错点和薄弱的地方,之后据此设计相应的课程教案。这样在课堂上学生就能够根据教师针对性的教学设计进行学习,以此来提升课堂教学的有效性。

第二,应用大数据提升学生的学习自主性。学科教学最关键的就是要提高学生的学习积极性,所以在高中数学教学中教师要注重学生自主性的提升。在高中数学教学中,课后知识巩固与习题练习是提高学生学习成绩的重要组成部分,但以往学生通常都是靠手抄错题的形式进行习题纠错和解答的,这种方式取得的效果并不显著,一是浪费了较多的学习时间,二是形式枯燥,学生学习自主性不高,在整理之后查漏补缺效果也不好。所以在此环节可以应用大数据技术为学生的课后自主学习提供平台。在大数据技术的支持下,教师可以将学生之前做好的试卷或者解答过程的问题输入到计算机系统当中,之后学生通过网络进行问题的下载和解答,以便于学生对问题进行查漏补缺。这种方式相比于传统的纠错形式,具有实时性的特征,有利于学生对纠错内容进行更好的掌握。

第三,应用大数据开展分层式的教学形式。目前我国多数高中数学课堂教学采取的都是班级统一上课的教学形式,模式单一固定,缺乏创新性,不仅不利于激发学生的学习积极性,还会影响学生的个性发挥,进而影响学生的潜能的挖掘。“因材施教”是孔子提出的教学思想,所以在大数据环境下,教师要利用大数据技术采取分层式教学的方式,结合每个学生的差异性,开展不同类型的教学活动。每个学生都是独立存在的个体,在思想、能力以及身心发展上都具有差异性,所以针对不同学生的不同特性开展分层教学活动,不仅能够满足学生层次化的学习需求,还能够有效地激发学生的学习兴趣。同时,教师在数学教学中尝试不同的教学方法,应用创新型的教学模式,也能够很好地活跃课堂氛围,调动学生的课堂参与度,从而达到提升学生学习效果的目的。

利用大数据拓宽学生获取知识的途径

大数据时代下,数据量和知识信息不断扩大,学生能够接触和学习到的内容也不断增多,所以教师要利用网络信息技术,在网络上搜集和整理更多的学习资料和信息,然后结合具体的教学目标和学习内容进行这些信息的分析和处理,以此来提高教师的教学效果。而在大数据环境下,学生也能够利用网络技术自行进行数学资源的获取,不断丰富自身的学习的内容,对抽象的数学知识进行简化。另外,在大数据环境下,教师要为学生提供真实、可靠的数据教学服务,引导学生养成善于开发和应用数据的意识和能力,能够根据自身的需要进行数据的获取,这也能够为教师教学互动的开展提供针对性,促进师生间的共同进步。例如:在学习“数列”这节课时,教师可以在课前引导学生利用网络自己进行课前的预习,对数列这节课的知识有个简单的认识,并能够对基本的知识点以及概念进行理解。之后,在课堂上教师可以利用多媒体技术开展具体的教学活动,将教学知识点直观、形象地展现在学生的面前,在课程结束之后,教师组织学生对自己设计的随堂测试问题进行解答,然后对错题进行整理。这种一系列的教学活动,能够提高学生大数据技术的利用与开发能力,对拓宽学生的知识获取途径,提高学生的学习效率具有关键作用。

利用大数据为家长提供教育平台

家庭在学生教育中具有非常重要的作用,家庭是学生的第一所学校,但以往的高中数学教学对家庭教育并不重视,家长没有广泛地参与到学校教育中去,而学校也没有为家长提供更多学习教育的机会,除了每次家长会之外,教师其他时间很少能见到家长,也就很少能参与学生的学习。但大数据时代,网络技术的应用为家长与学校教育的沟通提供了很宽广的平台,家长可以通过固定的软件进行账号的绑定,然后随时对自己家孩子的上课以及课后情况进行了解,进而更好地了解学生近期的表现情况。同时,家长也可以利用这些软件与教师进行交流,对学生的学习和生活情况进行了解,与教师进行充分的沟通和互动。使家长能够更好地配合学校的教育活动,在提高学生数学学习效果的同时,促进学生的健康成长。

3结语

综上所述,大数据时代下数据数量不断增多,网络技术的应用越发广泛,在此种环境下开展高中数学教学活动,不仅有利于创新教师的教学思想和教学方式,也有利于激发学生的学习兴趣,提高学生对数学学科的学习热情,从而达到大数据促进学科教学效果提升的目的。高中数学是一门综合性学科,能够培养学生的逻辑思维和推理能力,同时数学也是一门与人们日常生活密切相关的一门学科。所以在大数据时代,教师要利用好大数据信息,发挥好信息技术在教学中的优势,不断改善自身的教学角色,突出学生的主体地位,拓宽学生获取知识的途径,加强家长与学校的沟通等,使学生在大数据环境下能够养成乐于学习的好习惯和科学的学习方法,推动高中数学教学效果的有效提升,促进学生身心健康成长。

参考文献

[1]孟越飞.大数据背景下的高中数学教学[J].中小学电教(下半月),2018(1):22.

大数据应用论文参考文献

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

大数据下的计算机信息处理技术研究论文

摘要: 现如今,随着科学技术的快速发展,计算机技术已经融入到人们的生活之中,想想10年前的计算机技术和现如今的计算机技术,真的是天壤之别,发生了翻天覆地的变化。同时,大数据的应用也越来越广泛,带来了丰厚的利润,各种“云”层出不断,对大数据的背景下,计算机信息处理的技术提出更高的竞争和要求。本文首先介绍大数据的概念,阐述基于大数据背景下的各种计算机信息处理技术,并对技术进行分析研究,最后对大数据未来的发展的机会做出分析。

关键词: 大数据;计算机信息;技术研究

随着科技的迅猛发展,大数据的应用愈来愈广,随之产生的数据系统总量大,十分庞大,这就对大数据时代下的计算机信息处理技术提出了更高的要求,如何将大数据处理的井然有序,有条不紊,值得每一位考研人员进行探讨。

一、大数据的概念

什么是大数据?大数据,另一种叫法称之为巨型资料,是一个十分复杂密集的数据集,这样的数据集在一定的时间内,依靠于传统普通的数据加工软件无法最终实现管理、抓取及处理的功能,需要进行创新,用新的处理模式才能够实现。大数据具有虚拟化、按需服务、低成本等等特点。在每一个消费者的角度来看,大数据中的计算技术资源服务可以帮助每一个大数据用户完成想要的资源信息,用户只需进行付费就可以直接使用,根本不需要到处搜寻资料,跑来派去的打听。这从根本上改变了人们对信息资源的需求方式,为用户提供一种超大规模的网络资源共享。同时,面对海量的大数据库资源,如何对大数据资源进行处理,得到用户们想要的信息资源,需要计算机信息技术不断的进行挖掘。

二、大数据下的计算机信息处理技术

总体的来说,基于大数据背景下的计算机信息处理技术总共可以分成以下3个方面:信息的获取及加工技术、信息的存储技术和信息安全方面的技术。下面就针对这三种技术,进行研究分析。1)信息的获取及加工技术。信息的获取及加工技术是实现信息化的第一步,是最基础的工作内容,只有完成了信息数据的搜集工作,才能进行下面的计算机信息技术的处理。因此,如若进行信息的采集工作,需要首先明确信息的目标源,对信息数据进行监控,时刻把握信息的流向及动态,然后将采集的信息数据输入至计算机数据库中,实现了信息的获取采集工作。接下来是第二步,信息的加工及处理工作,所有的加工和处理技术的核心在于用户的指引,完全由用户导向,设定信息的筛选范围,确定信息的丰富度等等。最后是依照于用户的要求,将信息资源传输到用户手中。这样就实现了整个信息从采集到处理,再从处理到传送工作的整个流程。2)信息的存储技术。在大数据的背景下,对于整个计算机信息的处理,信息技术的存储是十分关键的环节,可以将处理加工的数据得以保存,更方便用户对于数据的调取和应用。而且,现如今的信息数据总量大、更新速度快,合理的运用存储方面的技术,可以快速的实现信息的存储工作,提高工效效率,将复杂变简单。在目前的时代下,应用最广泛的是分布式数据存储技术,应用十分方便,能够实现快速大量的数据存储。3)信息安全方面的技术。大数据在方便用户使用和享受的同时,信息数据资源的安全性也是不容忽略的,而且随着社会的发展,数据资源的安全性和隐私性逐渐受到关注,如何实现数据库的安全是个十分值得研究的课题。首先最主要的是建立计算机安全体系,充分引进更多的人才。其次需要加强安全技术的研发速度,由于大数据发展及更新速度快,需要快速的更新原有的安全体系,尽快的适应大数据时代的更新速度。除此之外,加强对信息的监测是十分必要的,避免不法之人进行数据的盗取,在信息数据庞大的体量下,依然能够提供稳定有效的安全体系。

三、大数据下的计算机信息技术的发展前景

1)云技术的发展是必然趋势。云计算网络技术是越来越得到大的发展,一方面由于计算机硬件系统的数据处理技术有限,云技术可以完全的将弊端破除,同时,它能够利用最新的数据资源和处理技术,不依赖于计算机硬件系统。因此,随着庞大的数据越来越复杂,传统的数据处理方式已经不能够适应,未来将计算机信息处理必将朝着云计算发展。2)计算机网络不再受限于计算机硬件。未来,计算机网络技术将会不再受制于计算机硬件的限制,网络的传输技术更加趋向于开放化,计算机网络和计算机硬件将会分隔开,重新定义新的网络架构。3)计算机技术和网络相互融合。传统的计算机技术需要运用计算机的硬件系统才能够实现信息的处理、加工及存储工作,未来新的.计算技术将脱离于计算机硬件配备,可以仅仅用计算机网络就可以实现数据的加工和处理。同时,二者也将会相互融合、相互发展真正的满足由于大数据时代的更新所带来的困扰,这是未来大数据背景下计算机技术发展的又一个方向。

四、大数据下的计算机信息技术面临的机遇和挑战

在大数据背景下,计算机信息技术的机遇和挑战并存,首先,病毒及网站的恶意攻击是少不了的,这些问题是站在计算机信息技术面前的巨大挑战,同时,近些年,网络不断,社会关注度逐渐提高,网络的安全问题也是不同忽视,再者,信息之间的传送速度也有限,需要对传送技术进行创新,以适应更高的用户需求。最后,随着大数据库的不断丰富,越来越庞大的数据资源进行加工和处理,对数据的存储又有了新的要求,如何适应不断庞大的数据信息量,实现更加便捷的、满足用户需求的调取也是一个巨大的挑战。与此同时,也存在着许多的机遇。首先,大数据对信息安全的要求越来越大,一定程度上带动了信息安全的发展,其次,大数据在应用方面,对企业及用户带来了巨大的便利,同时也丰富了产业资源,未来用户及企业面前的竞争可能会转化为大数据信息资源的竞争。最后,大数据时代的来临,构造了以信息安全、云计算和物联网为主要核心的新形势。

五、结论

通过一番研究,目前在大数据时代下,计算机信息技术确实存在着一定的弊端,需要不断的进行创新和发展,相信未来的云计算会越来越先进,越来越融入到人们的生活及工作当中,计算机信息技术面临的巨大的挑战和机遇,面对挑战,抓住机遇,相信未来我国的计算机技术会越来越好,必将超过世界领先水平!

参考文献:

[1]王秀苏.计算机信息处理技术在办公自动化上的应用[J].科技经济市场,2010(03).

[2]张连杰.企业管理中计算机技术的应用[J].电脑知识与技术,2011(26).

[3]陈静.浅谈计算机处理技术[J].科技与企业,2012(11).

[4]赵春雷,乔治纳汉."大数据"时代的计算机信息处理技术[J].世界科学,2012.

[5]庄晏冬.智能信息处理技术应用与发展[J].黑龙江科技信息,2011.

[6]艾伯特拉斯洛,巴拉巴西,著.马慧,译.爆发:大数据时代预见未来的新思维[M].北京:中国人民大学出版社,2012.河南省高等学校重点科研项目计划(16A520008)

大数据教育论文参考文献

大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究

教育理解:教育大数据的意义维度原创:吴南中夏海鹰等世界在你手中,概念的创造图摘要:文章聚焦什么是教育理解、什么是教育理解、什么是教育理解三个问题,探索了教育大数据对教育理解的意义。围绕这三个问题,文章首先对教育理解进行了界定,指出教育大数据视角下的教育理解是教育工作者围绕“文本”释义把握教育育人意义的过程。 随后,文章指出,教育理解是教育大数据支撑下教育创新发展的新动能。最后,文章从智能教育生态布局、教育大数据技术发展、“理解资源”建设、教学过程优化等四个方面探讨了基于教育大数据的教育理解实践策略此外,还讨论了教育理解的局限性,认为教育大数据伦理和教育大数据技术分别限制了教育理解的深度、广度。文章的研究旨在提高教育工作者依靠教育大数据进行教育理解的能力。关键词:教育理解; 教育大数据; 学习过程; 视域融合自教育学诞生以来,教育学科学化成为教育研究者孜孜不倦的追求,教育学史上许多著名教育家试图通过量化来摆脱教育学研究中的纯洁性思辨,Comenius,Herbart,Meumann,Thorndike,OConnor但是,有些教育行为无法用准确的工具量化。 例如,学习者对人的精神、心灵等问题的内在理解、反思性感知等,很难找到有说服力的证据,只能从输入、输出的角度来判断教育的效果,而教育过程中的转换机制如何不清晰在此背景下,极难追求教育理解理论所表达的“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”等[1],甚至具有一定的幻想性和迷惑性,有“玄虚”之嫌同时,由于缺乏真正的理解,教育“唤起”学习者的效用发挥和时机选择也在一定程度上受到了影响。随着学习者的学习环境从传统的物理课堂向在线领域和虚实融合环境的转变,以及可穿戴设备和情境感知技术在教育教学中的应用,学习者的行为和特征逐渐具备了数据化的能力。研究者们对于如何捕捉、分析、利用学习和生活各方面的数据展开了大量的研究,能够有效地挖掘各种隐藏的、无法测量的教育关系,将原本的“黑匣子”变成一种“看不见”“就像医学上有‘核磁共振成像’技术一样”[3],学习过程是可以测量的。本研究聚焦教育理解是什么、教育理解是什么、教育理解是什么三个问题,探索教育大数据对教育理解的意义。灯泡之间看起来是灰色的一什么是教育理解:教育大数据视角1理解与理解教育在西方,理解来自解释学。《圣经》由不同时期的不同文本组合而成,用同一意义体系来阐释其文本内涵,会产生相互矛盾的解释。为了避免这种现象,Schleiermacher提出了他的“普遍解释学”思想。 即“先划分理解过程和理解对象,再区分他人的理解和辩证理解”[4]。在Heidegger[5]看来,只有在生活的“周围困境”中才能产生有意义的理解,个人的文化背景、社会经验、传统观念等都会干扰这种理解。在中国,根据《辞海》的解释,理解是指“应用现有知识暴露事物联系、认识新事物的过程,其水平因暴露的联系性质和人的认知能力而异。[6]但《朗曼当代英语词典》对“理解”有不同的解释,更多地体现了对理解的行为和判断。在此基础上,诠释学提出“理解是基于历史多元性主体对话结构的实践过程”[7]、“富有思想的人比缺乏思想的人更能展现出对他人在具体环境下的真正理解”[8]。在这些“理解”解释的支撑下,学者们开始用“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”来描述理解,并据此解释教育现象,形成了理解课程观。将理解课程观应用于教学,可以说是理解教育[10]。在理解教育的影响下,教育者不是全部强加于作为学习主体的学习者,而是通过积极的支持和指导,通过“唤起”学习者来使教育发挥作用。同时,“唤起”释放人们对目标、事实、记忆、概括、实验、真理探索的分析和叙述,以学习情景为教学要素的关键,构建与学习情景形成相关的“学习场域”、“学习空间”、“学习环境”也成为教育研究关注的重点围绕创造学习者的学习环境等的后续教育、教育行为,以学习者的现有状态,也就是Gadamer[11]中所说的“偏见”为起点。“偏见”影响理解效率和效果——现代教学理论有类似的观点,表现为以前的经验和知识对教学设计有决定性的作用,“混合学习中教学设计的起点是找人”[12]。那么,如何找到学习者呢? 如何把握学习者的学习状态? 如何判断学习者的认知风格? 教育大数据找到了解决这些问题的方法。机电一体化2教育大数据和教育理解大数据是继云计算、物联网之后的重大技术变革。在美国,大数据被认为是与“信息高速公路”具有同等地位的重要科技行动[13]。大数据的价值通过“量”与“全”的占有,进行各种数据的交换、整合、分析,发现新知识,创造新价值,带来大知识、大科技、大效益、大发展[14]。在教育领域,教育大数据通过对教育过程数据的捕获和记录、分析和利用,解决教育过程中课程资源建设、学习环境的形成、教育科学评价和教师能力的提高等问题。教育的根本作用是育人,表现方式是教育,教育教学的一切活动都是以“育人”为中心派生的。因此,教学理解是以学习者为对象的理解,应该涵盖学习者对自身、课程、教学过程、评价等的认识,并在此基础上设计相应的教学环节,实现育人效果。可以推断教育教学问题的本源是学习者理解能力的不足。教育大数据通过挖掘数据,帮助教育工作者直观、准确地理解和认识教育及其过程,掌握学习者的“偏见”和“唤起”条件,精准跟踪学习者的情感价值观、认知能力、知识结构和技术技能的变化,达到“沸沸扬扬”在教育大数据的支持下,教师可以更积极地调动资源,改变交流方式,实施教育支持,成为“精神交流盛宴”的主体。在教师的积极作用下,师生冲突状态转变为融合状态,师生精神水平提高,学习者自主学习能力、创造能力、自我适应能力也显著提高。结合以上分析,本研究重新界定了教育理解——教育大数据视角下的教育理解是教育工作者围绕“文本”的释义。 “文本”是本研究中教学过程中的多种载体,是呈现给学习者后可以通过视觉、听觉、触觉等感知到的内容。 (是把握教育育人意义的过程,其内涵主要表现在以下四个方面。 )教育理解是教育实践导向的内在调控机制。教育理解活动及其结果是对教育实践产生促进作用的内因,理解的实践导向是理解不是主观臆断,不是融于自我意识的怪影和荒诞想象之中,而是基于教育大数据相关性的各种理性预测,调动各种资源教育理解是基于历史的理解。学习者“偏见”中的“以前的经历”等因素,可以在历史中找到答案。但历史不是一部空白的历史,而是联系着过去的种种,是现实的客观存在和对未来的显现。由于历史的不可避免性和选择性,同一门课在不同的时间会产生不同的理解。 学习者既不能脱离历史创造条件,也不能自然而然地摆脱历史的制约。教育理解是有价值的理解。教育大数据要通过对学习者的全域考察,体现时代精神多元化包容的特点,教育理解也要从时代精神中找到调整的方向,促进教育理解意义的不断生成。教育理解是一种动态的理解。教学实践是教育工作者与学习者的互动,师生在互动过程中有新的体会,教学理解也随着对话的进一步深入而实现水平的提高。二什么是教育理解:教育大数据支撑的教育创新发展新动力2017年6月20日,每日科技网报道了阿里巴巴在支付上脱离手机的技术。 他认为,这一技术开创了新“颠覆”——这次“颠覆”的主要技术,是物联网和图像识别技术。其实,技术尤其是信息技术已经受到各个国家的关注,如美国未来学家Rifkin[15]在《第三次工业革命》一书中提出了具有影响力的“五大支柱学说”。 英国《经济学家》杂志发表《专题报告》,提出了“制造业数字化”第三次工业革命的特点[16]德国提出了“工业战略”; 我国提出了“中国制造2025计划”等。在教育研究者看来,新工业革命需要关注人才培养的理念、目标、内容、方法与途径、体系重点等系列化转型[17]。 核心是实现教育的根本任务,“让学生意识到自己是同一个生物圈的一部分,从而思考、活动身体”。 具体体现在:破除批量化、标准化、固定化育儿理念,实行个性化、定制化、分散协同化,注重人的个性化和差异化发展,培养创新意识、合作意识、发展意识、服务意识、终身学习能力、社会情绪能力,注重人与人之间的关怀使这些变化发生,其根本要求是更加关注人,这也是理解教育的出发点。1创新型人才的培养需要教育大数据的紧密支撑。 “创新型人才”是指具有创新意识、创新精神、创新思维、创新能力并能取得创新成果的人才。( 18 )从实践看,创新行为是在内在优势和外部环境的双重影响下,结合知识体系和环境体系的内外作用而产生的,而问题发现能力、批判性思维、资源整合能力、问题解决能力是创新行为发生的关键。理想的创新型人才教育,需要教育者首先明确不同个性学习者的不同兴趣爱好和不同的学习需求,并提供相应的学习内容和方式,引导学习者正确分析、勇于尝试,不断地将学习过程过渡到“学习型创造”过程。随着传统课堂学习向混合学习、在线学习的转变,更多的学习行为会通过大数据出现在教师身上,教师可以通过大数据找到创新人才的发展需求,提供相应的学习资源,设计特定的教学环境。在教育大数据的紧密支撑下,创新型人才培养的客观规律和总体模式将被人们更加合理、准确地认识。2文化多样性需要通过教育大数据捕捉学习者的移情状态。 不同种族、宗教、语言群体之间的联系日益紧密,原本封闭的民族文化受到冲击,学习者对各种事物有着多元的理解。 在教育实施过程中要抓住学习者的移情状态,实施“入心”教育。在传统的教学范式中,研究者把这种基于学生状态进行教学的教学设计称为“生成式”设计。教育大数据通过情境感知装置将学习者的“心动”转化为实时“可视”,让教师在此基础上有目的地呼叫资源、激发兴趣、调节情绪,让学生不再是课堂上的“弃儿”。 师生在对话中产生共鸣,产生教育理解所需的“视域融合”。3复杂的新型人才培养需要教育大数据提供过程的支撑,Piaget[19]指出,传统认知论只重视高级认知,即只重视认知的最终结果,看不到认知的建构过程。与此相似,量化数据在传统教学中的主要作用是判断“输入”与“输出”的关系。换句话说,就是判断通过量化数据,提供什么样的教育,得到什么样的结果,通过教育输出了什么样的可测量的结果,对于输入后对学习者的作用过程不知道。即使在现代教育中,人才培养的实际效果也没有明确的证据有力地说明教育创新的合理性和科学性。教育大数据通过描述学习者的全方位数据,用教育大数据支持的“分析”替代了教育过程的复杂性。 教师为学习者创造的视野不是教师想象中的视野,而是基于教育大数据的“可视化”视野。 师生之间出现共鸣,甚至发生视域的融合,在融合过程中引导学习者的学习、工作、人、发展。4人才评价的成长潜能评价需要为教育大数据提供反馈,评价具有世俗意义的人才的“选拔”功能,既是教育理解的目标,也是下一阶段理解产生的基础。以考核为手段的评估,缺乏评估所需的全面性、准确性、可靠性的教育大数据提供了准确记录学习过程、学习效果、学习效率的功能,在一定程度上可以衡量学习者的潜能。在此基础上,教育大数据从“学习量”到“学习能力”、“学习效率”等全面反映学习者潜能的数据进行评估,帮助教育工作者构建个性化的支持机制,最大限度地发挥学习者的潜能。同时,用人单位或较高级别的教育机构也可以通过教育大数据全面考察学习者的状态、特征和发展潜能,选拔必要的合适人才,实现人才选拔功能。大数据三、如何进行教育理解:基于教育大数据的实践策略“拥抱新范式,总是需要重新定义相应的科学。[20]我们在思考教育大数据理解价值的同时,要基于以下教育大数据实践策略,指导教育实践改革,促进教育研究范式的转变: 1利用教育大数据促进教育理解以发挥教育大数据的理解价值不是一个不言自明的话题。相反,教育大数据理解效用的发挥需要几个前提条件。在数据获取上,只有从传统课堂场转向面向未来的“虚实融合场”,最终目标转向“智慧学习场”,才能及时捕捉教育大数据。“智力学习场”的目标是建立可感知学习的环境,以识别学习者的特征,提供适当的资源和方便的交互工具,记录学习过程,评估学习成果,最终促进有效的学习[21]。利用教育大数据捕获技术和设备,设置相应的采集条件,配置便于获取教育大数据的智慧教育生态,为后期的数据捕获、利用和创新提供数据支撑,可以更好地发挥教育大数据的理解价值。2发展教育大数据技术,支持教学过程与学习者视域融合的商业大数据特征清晰,数据模型简单,应用价值清晰。教育大数据要产生应用价值,需要将自然语言、外部环境、人文基础、资源特征等所有相关因素转换为形式逻辑,通过转换体系以简单易行的方式为教师提供讲解文本、图表等支持。其中,教育大数据技术起到的作用非常重要,因此:开发情境感知技术和设备,准确掌握学习者的生命体征变化数据和学习过程相关变化数据等; 探索连接学习系统的智能穿戴设备与学习状态之间的联系,掌握学习者的情绪变化(表现为心率、肢体语言、脑电等变化),帮助教师对学习者的理解。 探索建立基于大数据的及时反馈机制,通过调整教学方式,促进学习者回到学习的“舒适境界”,使教师和系统能快速感知学习者的适应度。3依托教育大数据,建设“资源理解”“资源理解”,本质是学习者乐于学习的资源,是能够与学习者视域融合的资源,是基于学习者的生活经历、人文素养、期望和想象力等个人状态,通过与资源的交流而构建的“学习世界”“资源理解”的构建可以从以下几个方面入手:教育大数据对学习者的“期望”理解度是“资源理解”构建的基础。教育大数据是教育工作者提高资源“生命质量”的有效支撑。学习者在与资源交互过程中的动作特征、交互特征、过程特征和反馈特征等可以通过数据方式来捕捉,哪里是难点,需要更多的案例来帮助学习者理解; 哪里有点无聊,就需要增加资源趣味性哪里简单,就需要提高认知负荷水平等等——这些问题都可以通过流程数据,以仪表的方式通过平台反馈给资源建设者挖掘促进理解的“空白点”。提高“理解境界”,需要设置“空白点”引发学习者的“失落”情绪,从而激发探索、填充、完善资源的意愿,提高理解水平。但是,如何发现这样的“空白”,考验着教育者的智慧。 ——一般来说,热潮兴起时的“突然冷却”、平凡奇特时的“突然脱落”、兴致勃勃时的“突然停滞”等都有“空白”的效果。认清这些状态,在教育大数据技术进步的前提下,具有更多的可能性。教师应该依托教育大数据,通过“空白点”将认知范畴内的理解水平与学习者相关联,建立“理解资源”。4发挥教育大数据精准支撑,优化教学过程教育大数据通过支持教学过程优化对教学理解产生作用:教育大数据帮助教师正确认识教学过程。理解教育理念后,认为教学过程是课程专家、教师、学习者、技术人员在特定场域进行的创新协同活动。通过教育大数据技术,可以完全展现教育过程的直接、客观、准确、真实等特点; 通过严密严密的逻辑推理和联动的云数据,教师对学习者在学习过程中的认知变化、能力变化、情感变化等及其影响因素的认识也更加合理,这为优化教学过程提供了条件。教育大数据为教师如何介入、何时支持提供了依据。教学文本性质、认知方式、学习者情境不同,理解过程会产生偏差,教师需要嵌入一定的支持以纠正偏差,形成共识。教育大数据可以及时捕捉无节奏的键盘敲击、焦虑的斜视、与学习者的无序互动等各种“非正常信息”,这些信息有助于教师有意识地调整教学,开展针对性的学习支持。教育大数据可以改变教育理解的“主观性”,促进基于量化的客观判断。亚里士多德认为,理解只是一种判断,它“不是永恒存在和永恒不变的,而是引起怀疑和关怀的”[22]。由于理解的主观性模糊了学习输入,教育大数据需要收集相应的信息,基于现有特征判断教育干预和支持是否合理。总之,教育大数据的理解意义在于找到人,看清人的状态,提供相应的资源、过程等学习支持,可以优化学习过程,促进理解的发生。大数据会从连接的移动设备上分析大量数据。白色背景上的手智能手机四教育理解限度:伦理与技术双重约束1教育大数据伦理:制约教育理解的深层教育数据伦理是对教育数据产生、收集、存储、分析利用过程中应具有的道德信念和行为规范的理性审视[23]。在教育理解领域,教育大数据的基本运作方式是收集学习者关于学习过程、社会生活、身体状态、精神情感等方面的数据。随着数据采集技术的飞速发展,数据在“洞察”学习者学习过程、提高学习者理解水平的同时,“也是学习者隐私失控的开始”[24]。 例如,教育大数据的大规模使用会泄露学习者的隐私,永久存储的数据可能会对学习者进行固化标记,数据驱动模式容易导致学习者潜能的挖掘不充分[26]等。因此,教育大数据的发展需要在道德和秩序两个体系的规范要求下发展,需要遵循安全原则、公平原则、知情同意原则等伦理标准,避免数据采集的无序; 对大量数据的挖掘要保持一定的敬畏,不要越过伦理的“底线”。2教育大数据技术:广泛制约教育理解的教育数据技术是教育大数据发展和应用的“新引擎”,但现有教育数据技术存在情境感知能力不强、生命体征识别能力不高等不足。另外,教育领域在教育大数据方面的技术研发投入较少,限制了大数据技术对教育的发展,制约了教育大数据理解价值的发挥。总的来说,教育理解的价值在于提供更好的教育,教育大数据技术的出现支撑着教育理解的加深。值得注意的是,教育大数据技术作为工具性的存在,无论提供多么全面的学习者信息,捕捉数据的技术多么强大,实现了多么准确的反馈,都不能替代教师对学习者的理解,更不能替代教师和教育团队的自我理解尽管如此,教育大数据还是可以为教育理解的产生和理解水平的提高提供技术支撑,帮助师生实现自我理解、自我超越,从而在教与学上出现更大的突破,实现个人的生命意义。虚拟形象教育软件参考文献[1]McTighe J, [ m ].Alexandria, VA:associationforsupervisionandcurriculation 1999:19.[2] [ 26 ]吴南中、夏海鹰.教育大数据范式的基本理念与建构策略[J] .电化教育研究,2017,2017 2018、2019、2018, 2019]涂子沛.大数据:正在到来的数据革命,以及政府、商业,2013:12,33.[4]洪汉鼎.诠释学——其历史与现代发展[M] .北京:人民出版社,2001:74.[5] 靳玉乐.理解教学[M] .成都:四川教育出版社,2006:3.[8] (加)马克斯范梅南著.李树英译.教学机智——教育智慧的含义[M] .北京:教育科学出版社,2001:4454 (3) 29 )8)3-8.[11] (德)汉斯格奥尔格加尔达马着.洪汉鼎译.真理与方法——哲学解释学的基本特征)上1999:355,28.[ 12 ]吴南中.混合学习视域下的教学设计框架重构3——兼教学[5]:18-24.[13]何克抗.大数据面面观[J] .电化教育研究孙豫宁译.第三次工业革命[M] .北京:中信出版社,2012:32.[ 16 ] Rothko 2011 )鲍成中.第三次工业革命与人才培养模式变革[J] .教育研究,2013,2010 (4- 9,43.[ 18 ]任飏,陈安.论创新型人才及其行为特征[J] .教育研究,2017, (1) 149-153.[ 1995:3.[20] (美) .库恩着.李宝恒,纪树立译.科学革命的结构( m ) .上海:上海科学技术出版社,1980:44.[21]陈卫东,叶新东(5) 42-49.[22] )古希腊)亚里士多德着.廖申白译.尼各马可伦理学( m ) .北京:商务印书馆,2003:183.[23]刘三娘牙,杨宗凯,李卿.教育数据伦理(大本文仅用于理念共享,无商业用途。 尊重原作者的创作,如有侵权立即删除。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据的应用的论文参考文献

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

数据应用英文论文参考文献

格式如下:

[序号]主要责任者.文献题名[文献类型标识].出版地:出版者,出版年.起止页码(可选)

其中参考文献类型:专著[M],论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A]

电子文献类型:数据库[DB],计算机[CP],电子公告[EB]

电子文献的载体类型:互联网[OL],光盘[CD],磁带[MT],磁盘[DK]

扩展资料:

其他类型参考文献写法:

1、期刊文章

[序号]主要责任者.文献题名[J].刊名,年,卷(期):起止页码

例:[1]何龄修.读南明史[J].中国史研究,1998,(3):167-173.

[2]OU J P,SOONG T T,et advance in research on applications of passive energy dissipation systems[J].Earthquack Eng,1997,38(3):358-361.

2、论文集中的析出文献

[序号]析出文献主要责任者.析出文献题名[A].原文献主要责任者(可选).原文献题名[C].出版地:出版者,出版年.起止页码

例:[7]钟文发.非线性规划在可燃毒物配置中的应用[A].赵炜.运筹学的理论与应用——中国运筹学会第五届大会论文集[C].西安:西安电子科技大学出版社,.

3、报纸文章

[序号]主要责任者.文献题名[N].报纸名,出版日期(版次)

例:[8]谢希德.创造学习的新思路[N].人民日报,1998-12-25(10).

4、电子文献

[文献类型/载体类型标识]:[J/OL]网上期刊、[EB/OL]网上电子公告、[M/CD]光盘图书、[DB/OL]网上数据库、[DB/MT]磁带数据库

[序号]主要责任者.电子文献题名[电子文献及载体类型标识].电子文献的出版或获得地址,发表更新日期/引用日期

例:[12]王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].

[8]万锦.中国大学学报文摘(1983-1993).英文版[DB/CD].北京:中国大百科全书出版社,19

参考资料:

百度百科-参考文献

英文论文写作参考文献

参考文献是文章或著作等写作过程中参考过的文献,文后参考文献是指为撰写或编辑论文和著作而引用的有关文献信息资源。

[1]AgranoflF, R. and Michael,M., 2003,“Collaborative Public Management; New Stiategies for Local Governments”, Geo^etown University Press,Washington,D. C.

[2]Aguinis, H. and Glavas, A., 2012, “What We Know and Don't Know About Corporate Social Responsibility: A Review and Research Agenda”,Journal of Management, 38(4),pp. 932-968.

[3]Altman, E.,1998' “Financial Ratio,Discriminant Analysis and the Prediction of Corporate Banlruptcy”? Journal of Finance, 23(4),pp. 589-609.

[4]Arenas, D.,Lozano,J. M. and Albareda,L.,2009,“The role ofNGOs in CSR:Mutual Perceptions Among Stakeholders”, Journal of Business Ethics,88,pp. 175-197.

[5]Aupperie, K., Carroll, A. and Hatfield,J.,1985,“An Empirical Examination of the Relationship between Corporate Social Responsibility and Profitability”,Academy of Management Journal, 28(2), pp. 446-463.

[6]Austin, J. E.,2000,“Strategic collaboration between nonprofits between businesses”, Nonprofit and Voluntary Sector Quarterly, 29(1), pp. 69-97.

[7]Baron,D. R, 1997,Integrated strategy* trade Policy, and global competition'California Management Review? 39(2), pp. 145-169.

[8]Baron,R. A., 2006, “Opportunity Recognition as the Detection of Meaningful Patterns: Evidence from Comparisons of Novice and Experienced Entrepreneurs”?Management Science, 9,pp. 1331-1344.

[9]Baiy, A. D?,1879,: “Die Erscheinung der Symbiose”, Strasbourg.

[10] Kotha, B. ., 1999,“Does Stakeholder Orientation Matter? The Relationship Between Stakeholder Management Models and Firm Performance”. Academy ofManagement Jounal, 42,pp. 488-506.

[11]Binghamf C. B. and Davis,J. P.,2012, “Learning Sequences: Their Emeigence? Evolution and Effect”. Academy of Management Journal 55(3), pp. 611-641.

[12]Blumer, H. , 1980, “Mead and Blumer : The Convei^ent Methodological Perspectives of Social Behaviorism and Symbolic Interactionism”,AmericanSociological Review, 45,pp. 409-419.

[13]Bondy,K.,2008,“The Paradox of Power in CSR : A Case Study on Implementation”. Journal of Business Ethics? 82(2),pp. 307-323.

[14]Bowen, F.,Aloysius. N. K. and Herremans,I.,2010,“When Suits Meet Roots:The Antecedents and Consequences of Community Engagement Strategy”, Journal of Business Ethics, 95,pp. 297-318 ?

[15]Brammer,S, and Millington,A., 2003, “The Effect of Stakeholder Preferences >Organizational Structure and Industry Type on Corporate Community Involvement”,Journal of Business Ethics,45(3)? pp. 213-226.

[16]Bridoux, F. and Stoelhorst, J. W.,2014, “Microfoundations for Stakeholder Theoiy : Managing Stakeholders with Heterogeneous Motives” , Strategic Management Joumah 35, pp. 107-125

[17]Bryson, J. M., Crosby, B. C, and Stone? M. M.,2006, “The Design and Implementation of Cross-Sector Collaborations: Propositions from the Literature”,Public Administration Review, 66(sl)。

[18]Carey, J. M.,Beilin, R., Boxshall,A.,Burgman M. A. and Flander , “Risk-Based Approaches to Deal with Uncertainty in a Data-Poor System:Stakeholder Involvement in Hazard Identification for Marine National Parks and Marine Sanctuaries in Victoria,Australia”, Risk Analysis: An International Journal,27(1),pp. 271-281,

[19]Carroll> A. B., 1979, “A TTiree-Dimensional conceptual Model of Corporate Performance”. Academy of Management Review, 4(4), pp. 497-505.

[20] Carroll, A. B?,1991,“The Pyramid of Corporate Social Responsibility: Toward the Moral Management of Organizational Stakeholders”. Business Horizons,34(4),pp. 39-48.

[1] Zhixin W, Chuanwen J, Qian A, et al. The key technology of offshore wind farm and its new development in China[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1):216-222.

[2] Shahir H, Pak A. Estimating liquefaction-induced settlement of shallow foundations by numerical approach[J]. Computers and Geotechnics, 2010, 37(3): 267-279.

[3] Hausler EA. Influence of ground improvement on settlement and liquefaction:a study based on field case history evidence and dynamic geotechnicalcentrifuge tests. PhD dissertation, University of California, Berkeley; 2002.

[4] Kemal Hac efendio lu. Stochastic seismic response analysis of offshore wind turbine including fluid‐structure‐soil interaction[J]. Struct. Design Tall Spec. Build.,2010,

[5] Arablouei A, Gharabaghi A R M, Ghalandarzadeh A, et al. Effects of seawater–structure–soil interaction on seismic performance of caisson-type quay wall[J]. Computers &Structures, 2011, 89(23): 2439-2459.

[6] Zafeirakos A, Gerolymos N. On the seismic response of under-designed caisson foundations[J]. Bulletin of Earthquake Engineering, 2013: 1-36.

[7] Snyder B, Kaiser M J. Ecological and economic cost-benefit analysis of offshore wind energy[J]. Renewable Energy, 2009, 34(6): 1567-1578.

[8] Ding H, Qi L, Du X. Estimating soil liquefaction in ice-induced vibration of bucket foundation[J]. Journal of cold regions engineering, 2003, 17(2): 60-67.

[9] Shooshpasha I, Bagheri M. The effects of surcharge on liquefaction resistance of silty sand[J]. Arabian Journal of Geosciences, 2012: 1-7.

[10] Bhattacharya S, Adhikari S. Experimental validation of soil–structure interaction of offshore wind turbines[J]. Soil dynamics and earthquake engineering, 2011, 31(5): 805-816.

[11] H. Bolton Seed, Izzat M. Idriss. Simplified procedure for evaluating soilliquafaction potential. Journal of the Soil Mechanics and Foundations Division. 1971,97(9): 1249-1273

[12] W. D. Liam Finn, Geoffrey , Kwok . An effective stress model for liquefaction. Journal of the Geotechnical Engineering Division, 1977, 103(6):517-533

[13] liquefaction and Cyclic Mobility Evolution for Level Ground During Earthquakes, J of the Geotechnical Engineering Division ASCE , 1979,

[14] and Cyclic Deformation of Sands-A Critical Review,Proceedings of the Fifth Pan American Conference on Soil Mechanics and Foundation Engineering,Buenos Aires,Argentina,1975.

[1] T. Paulay and J. R. Binney. Diagonally Reinforced coupling beams of shear Walls[S].ACI Special Publication 42, Detroit, 1974, 2: 579-598

[2] Lam WY, Su R K L, Pam H J. Experimental study of plate-reinforced composite deep coupling beams[J]. Structural Design Tall Special Building, 2009(18): 235-257

[3] ACI 318-02: Building Code Requirements for Structural Concrete, ACI318R-02:Commentary, An ACI Standard, reported by ACI Com-mittee318, American Concete Institute, 2002

[4] Siu W H, Su R K L. Effects of plastic hinges on partial interaction behaviour of bolted side-plated beams[J]. Journal of Construction Steel Research, 2010, 66(5):622-633

[5] Xie Q. State of the art of buckling-restrained braces inAsia[J]. Journal of Construction Steel Research, 2005, 61(6):727-748

[6] Kim J,Chou H. Behavior and design of structures with buckling-restrained braces[J].Structural Engineering, 2004,26(6):693-706

[7] Tsai K C, Lai J W. A study of buckling restrained seismic braced frame[J].Structural Engineering, Chinese Society of Structural Engineering, 2002, 17(2):3-32

[8] Patrick J. Fortney, Bahrem M. Shahrooz, Gian A. Rassati. Large-Scale Testing of a Replaceable “Fuse” Steel Coupling Beam[J]. Journal of Structural 2007:1801-1807

[9] Qihong Zhao. Cyclic Behavior of traditional and Innovative Composite Shear Walls[J]. Journal of Structural Engineering, Feb. 2004:271-284

按照高等学校学报编排要求用外文原文标注,注意页码标注应为P.(注意p下要有一点)。以英文书籍为例的标注格式模板:作者名(英文).书名(英文)[M].出版社地址(英文):出版社名(英文).出版年份(阿拉伯数字),页码()

英语论文参考文献标准格式

在各领域中,说到论文,大家肯定都不陌生吧,通过论文写作可以培养我们独立思考和创新的能力。那么一般论文是怎么写的呢?以下是我帮大家整理的英语论文参考文献标准格式,仅供参考,大家一起来看看吧。

用Times New Roman.每一条目顶格,如某一条目超过一行,从第二行起“悬挂缩进”2字符。参考文献中所有标点与符号均在英文状态下输入,标点符号后空一格。

参考文献条目排列顺序:英文文献、中文文献、网络文献。分别按作者姓氏字母顺序排列。文献前不用序号。

1)英文参考文献:

(1)专著与编著

排列顺序为:作者姓、名、专著名、出版地、出版社、出版年。

例如:

Brinkleyork: Knopf, 1993.

专著名中如果还包含其他著作或作品名,后者用斜体。

例如:

Dunn, Richard J ed. Charlotte Bront: Jane EyreNew York: Norton, 1971.

A、两个至三个作者

第一作者的姓在前,名在后,中间用逗号隔开;其余作者名在前,姓在后,中间无逗号;每个作者之间用逗号隔开,最后一个作者的姓名前用“and”,后用句号。

例如:

B、三个以上作者

第一作者姓名(姓在前,名在后,中间加逗号)后接“et al.”,其他作者姓名省略。

例如:

University of Hawaii Press, 1997.

C、同一作者同一年出版的不同文献,参照下例:

Widdowson, Henry G1998a.

Widdowson, Henry G. Cambridge:

Cambridge University Press, 1998b.

(2)论文集

参照下例:

Thompson, Pett. “Modal Verbs in Academic Writing”. In Ben Kettlemann & York: Rodopi, 2002: 305-323.

(3)百科全书等参考文献

参照下例:

Fagan, Jeffrey. “Gangs and Drugs”. ork: Macmillan, 2001.

(4)学术期刊论文

参照下例:

Murphy, Karen. “Meaningful Connections: Using Technology in Primary Classrooms”.

(5)网络文献

参照下例:

“Everything You Ever Wanted to Know About URL”.

(6)专著:

参照下例:

皮亚杰.结构主义[M] .北京:商务印书馆,1984.

(7)期刊文章:

参照下例:

杨忠,张韶杰.认知语音学中的类典型论[J].外语教学与研究,1999,(2):1-3.

(8)学位论文

参照下例:

梁佳.大学英语四、六级测试试题现状的理论分析与问题研究[D].湖南大学,2002.

(9)论文集

参照下例:

许小纯.含义和话语结构[A].李红儒.外国语言与文学研究[C].哈尔滨:黑龙江人民出版社,1999:5-7.

(10)附录

2)中文参考文献

一、参考文献的类型

参考文献(即引文出处)的类型以单字母方式标识,具体如下:

[M]--专着,着作

[C]--论文集(一般指会议发表的论文续集,及一些专题论文集,如《***大学研究生学术论文集》

[N]-- 报纸文章

[J]--期刊文章:发表在期刊上的论文,尽管有时我们看到的是从网上下载的(如知网),但它也是发表在期刊上的,你看到的电子期刊仅是其电子版

[D]--学位论文 :不区分硕士还是博士论文

[R]--报告:一般在标题中会有“关于****的.报告”字样

[S]-- 标准

[P]--专利

[A]--文章:很少用,主要是不属于以上类型的文章

[Z]--对于不属于上述的文献类型,可用字母“Z”标识,但这种情况非常少见

常用的电子文献及载体类型标识:

[DB/OL] --联机网上数据(database online)

[DB/MT] --磁带数据库(database on magnetic tape)

[M/CD] --光盘图书(monograph on CDROM)

[CP/DK] --磁盘软件(computer program on disk)

[J/OL] --网上期刊(serial online)

[EB/OL] --网上电子公告(electronic bulletin board online)

很显然,标识的就是该资源的英文缩写,/前面表示类型,/后面表示资源的载体,如OL表示在线资源。

二、参考文献的格式及举例

1.期刊类

【格式】[序号]作者。篇名[J].刊名,出版年份,卷号(期号)起止页码。

【举例】

[1] 周融,任志国,杨尚雷,厉星星。对新形势下毕业设计管理工作的思考与实践[J].电气电子教学学报,2003(6):107-109.

[2] 夏鲁惠。高等学校毕业设计(论文)教学情况调研报告[J].高等理科教育,2004(1):46-52.

[3] Heider, . The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 67.

2.专着类

【格式】[序号]作者。书名[M].出版地:出版社,出版年份:起止页码。

【举例】

[4] 刘国钧,王连成。图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.

[5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45.

3.报纸类

【格式】[序号]作者。篇名[N].报纸名,出版日期(版次)。

【举例】

[6] 李大伦。经济全球化的重要性[N]. 光明日报,1998-12-27(3)。

[7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33)。

4.论文集

【格式】[序号]作者。篇名 [C].出版地:出版者,出版年份:起始页码。

【举例】

[8] 伍蠡甫。西方文论选[C]. 上海:上海译文出版社,1979:12-17.

[9] Spivak,G. “Can the Subaltern Speak?”[A]. In & L. Grossberg(eds.)。 Victory in Limbo: Imigism [C]. Urbana: University of Illinois Press, 1988, .

[10] Almarza, . Student foreign language teacher's knowledge growth [A]. In and (eds.)。 Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. .

5.学位论文

【格式】[序号]作者。篇名[D].出版地:保存者,出版年份:起始页码。

【举例】

[11] 张筑生。微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7.

6.研究报告

【格式】[序号]作者。名[R].出版地:出版者,出版年份:起始页码。

【举例】

[12] 冯西桥。核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.

7.专利

【格式】[序号]专利所有者。题名[P].国别:专利号,发布日期。

8.标准

【格式】[序号]标准编号,标准名称[S].

【举例】

[14] GB/T 16159-1996, 汉语拼音正词法基本规则 [S].

9.条例

【格式】[序号]颁布单位。条例名称。发布日期

【举例】

[15] 中华人民共和国科学技术委员会。科学技术期刊管理办法[Z].1991-06-05

10.电子文献

【格式】[序号]主要责任者。电子文献题名。电子文献出处[电子文献及载体类型标识].或可获得地址,发表或更新日期/引用日期。

【举例】

[16] 王明亮。关于中国学术期刊标准化数据库系统工程的进展[EB/OL].

[17] 万锦。中国大学学报论文文摘(1983 1993)。英文版 [DB/CD]. 北京: 中国大百科全书出版社, 1996.

11.各种未定义类型的文献

【格式】[序号] 主要责任者。文献题名[Z].出版地:出版者, 出版年。

特别说明:凡出现在“参考文献”项中的标点符号都失去了其原有意义,且其中所有标点必须是半角,如果你的输入法中有半角/全解转换,则换到半角状态就可以了,如果你的输入法中没有这一转换功能,直接关闭中文输入法,在英文输入状态下输入即可。

其实,很多输入法(如目前比较流行的搜狐输入法)都提供了四种组合:

(1)中文标点+ 全角:这时输入的标点是这样的,:【1】-(而这时,我没有找到哪个键可以输入 / 符号)也就是说,这些符号是一定不能出现在“参考文献”中的;

(2)中文标点+半角:这时输入的标点是这样的,:【1】-(这时,我还是没有找到哪个键可以输入 / 符号)也就是说,这些符号也不能出现在“参考文献”中的;

上面列出的符号,中间没有任何的空格,你能看出它们有什么区别吗?我看只是-的宽度有一点点不同,其它都一样

(3)英文标点+全角:这时输入的标点是这样的,.:[1]-/

(4)英文标点+半角:这时输入的标点是这样的,.:[1]-/

从这两项可以明显的看出,半角和全角其实最大的差别是所占的宽度不一样,这一点对于数字来说最为明显,而英文标点明显要比中文标点细小很多(也许因为英文中,标点的功能没有中文那么复杂,就是说英文中标点符号的能力没有中文那么强大)

所以,很多人在写“参考文献” 时,总是觉得用英文标点+半角很不清楚,间距也太小,其实这点完全不用担心如果你觉得真的太小不好看,就用英文标点+全角吧而在[1] 之后,一般也都有一个空格。

对于英文参考文献,还应注意以下两点:

①作者姓名采用“姓在前名在后”原则,具体格式是:姓,名字的首字母。 如: Malcolm Richard Cowley 应为:Cowley, .,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. & .

②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly.

三、注释

注释是对论文正文中某一特定内容的进一步解释或补充说明注释应置于本页页脚,前面用圈码①、②、③等标识。

相关百科

热门百科

首页
发表服务