你首先要确定要选哪一位数学家,然后结合他的具体事例去写启发。数学家总是以推理论证的形式发表论文,没有也不可能写出他在证明之前所做的大量试探性、试验性的工作.但是数学家在证明一个定理之前,必须经历大量的具体计算,进行各种试验或检验,才能形成证明的思路和方法.只有在这个时候,才能在逻辑上进行综合,表达为一系列的推理论证,即证明.由此可见,“演”中有“算”.另一方面“算”中有“演”充分表现在算术和代数中.因此数学研究中存在着两个阶段:实验和证明.《实验数学》杂志的创办人、几何学家爱泼斯坦(Epstein, D.)和列维(Levy, S.)则从词源学的角度考察“证明(prove)”一词含有“尝试”、“试验”和“证实”的意义.他们说:“英语‘证明(prove)’有两个基本意义,一是尝试或试验,二是证实.”当然,数学中的实验是一种抽象的思想实验,它不同于自然科学中的实物实验;数学实验只是提出猜想和假说的一种方法,它还必须经过逻辑证明,才能使猜想或假说变成定理.英国数学家、菲尔兹奖获得者M·F·阿蒂亚认为:与其它自然科学的情况一样,数学中的一些发现也要经过几个阶段才能实现,而形式证明只是最后一步.最初阶段在于鉴别出一些重要的事实,将它们排列成具体含义的模式,并由此提炼出看起来很有道理的定律或公式.接着,人们用新的经验事实来检验这种公式.只是到了此时,数学家才开始考虑证明问题.对哈代来说,证明只不过是数学大厦的门面而不是其结构中的支柱.开展数学实验活动激发他们潜在的学习能力,致力于高层次的学习状态.此时此刻学生的学习不仅仅是记忆定义、定理和公式,而是通过操作实验来建构知识,有效地领会数学知识结构中的思想方法.学生通过操作实验学习数学,可以获得更多的反馈信息,并且不断地改进他们对数学新知识的理解.开展数学实验活动可以进一步培养学生的动手能力、观察和分析问题的能力,能使学生进入主动探索状态、变被动的接受学习为主动的建构过程,同时培养学生的创新精神、意识和能力.