利用迫敛性定理求数列极限的关键在于寻找到合适的上下界数列,使得原数列被控制在这两个新数列之间的同时,两个新数列趋于同一个值。因此,由迫敛性定理即可求得原始数列的极限。值得注意的是,这两个上下界数列的产生需要依据原始数列的特征进行放缩得到,一般会有一个方向比较容易得到,而另一个方向需要一定的代数变形。不过,归根究底,使用分析的基本语言而不是寻找上下限数列会是个更好的替代办法。一般来说,极限问题中困难的部分在于证明极限的存在性,而不是求得这个极限。
将分母全变为n^2+n,即将原式放大,得放大后极限位1/2;将分母全变为n^2+2n,即将原式缩小,得放大后极限位1/2;所以答案为1/2
187 浏览 3 回答
144 浏览 4 回答
330 浏览 3 回答
88 浏览 5 回答
112 浏览 2 回答
301 浏览 2 回答
351 浏览 2 回答
337 浏览 3 回答
252 浏览 3 回答
228 浏览 4 回答
123 浏览 7 回答
114 浏览 4 回答
349 浏览 5 回答
161 浏览 4 回答
143 浏览 3 回答
109 浏览 3 回答
120 浏览 4 回答
323 浏览 2 回答
311 浏览 9 回答
111 浏览 2 回答
133 浏览 2 回答
327 浏览 4 回答
323 浏览 3 回答
308 浏览 3 回答
357 浏览 6 回答