应对山体滑坡的山区公路施工措施论文
摘要: 滑坡对工程建设的危害很大,常使交通中断,影响公路的正常运输,本文结合实际,重点阐述了应对山体滑坡的山区公路施工措施。
关键词: 滑坡;公路;措施
1 滑坡概述
斜坡上的部分岩体和土体在自然或人为因素的影响下沿某个滑动面发生剪切破坏向下运动的现象称为滑坡。滑动面可以是受剪应力最大的贯通性剪切破坏面或带,也可以是岩体中已有的软弱结构面。规模大的滑坡一般是缓慢的、长期的往下滑动,有些滑坡滑动速度也很快,其过程分为蠕动变形和滑动破坏阶段,但也有一些滑坡表现为急剧的滑动,下滑速度从每秒几米到几十米不等。滑坡多发生在山地的山坡、丘陵地区的斜坡、岸边、路堤或基坑等地带。滑坡对工程建设的危害很大,轻则影响施工,重则破坏建筑;由于滑坡,常使交通中断,影响公路的正常运输;大规模的滑坡,可以堵塞河道,摧毁公路,破坏厂矿,掩埋村庄,对山区建设和交通设施危害很大。
滑坡分类的目的在于对发生滑坡作用的地质环境和形态特征以及形成滑坡的各种因素进行概括,以便反映出各类滑坡的工程地质特征及其发生发展的规律,从而有效地预测和预防滑坡的发生,或在滑坡发生之后有效的进行治理。根据不同的原则和指标,各国学者和工程部门对滑坡提出了各种分类方案。对于一个滑坡,从不同的角度可以有不同的分类,但实践中,我们应该抓住问题的主要矛盾,根据突出因素对滑坡进行分类,分类的原则就是看对我们认识、防治和处理此滑坡是否有帮助。
2 滑坡机理分析
在地质构造上,坡体表层为全、强风化岩层,岩性较软弱,岩石破碎,节理裂隙发育;
路堑边坡开挖后,造成坡体岩层层面临空,使坡体上的岩土体失去平衡;
路堑的开挖和削坡,破坏了坡体原有的平衡,同时坡体的卸荷,造成坡体节理裂隙张开,为坡体上水的入渗提供了通道,而灌溉水沟的存在又为坡体滑动提供了水源;
下渗的水软化强风化板岩和其中的泥质,为滑坡的最终形成提供了有利条件。
3 滑动面参数取值
根据对该滑坡勘察所取得的地质资料及目前滑坡的滑动状态,采用反演分析方法,选取典型的横断面反算滑面的力学参数,并将此反演值作为滑坡处理设计时的参数值。地下水是诱发滑坡的因素之一,在滑坡稳定性分析中,均考虑了地下水的场应力。
4 某山区公路应对滑坡的设计方案
按照“安全、环保、舒适、美观”的原则,在满足安全和规范要求的前提下,考虑施工技术的可行性和经济上的合理性,同时根据场地地形、工程地质条件及本合同段现场实际情况,对滑坡体进行处理。
在某山区公路施工中,由于滑坡推力较大,故在2#滑坡西块滑体的上级滑坡布设一排预应力锚索抗滑桩,以抵抗滑坡的下滑力作用,桩中心距左线线路中线约18m。由于锚索孔与桥墩存在交叉,部分抗滑桩因锚索与桥墩无法避开而改为普通抗滑桩。共设抗滑桩15根,其中锚索抗滑桩12根,普通抗滑桩3根。
主要施工流程
先施工抗滑桩,滑坡稳定后施工桥梁墩台。
锚索抗滑桩施工顺序为:测放桩位→清理并稳固桩孔附近坡面→施工抗滑桩锁口→开挖→节桩孔→绑扎护壁钢筋→支模→浇注护壁砼→开挖下一节桩孔→重复上面四道工序直到设计标高→封底→绑扎桩身钢筋→浇灌桩身砼至距桩头2m处,预留锚索孔位→浇注剩余砼。锚索孔钻孔→下钢绞线→注浆→张拉→锁定。
锚索与桩身工程可分别进行,先后顺序可根据实际情况确定,但应注意相互的配合与衔接。
抗滑桩施工
测量放桩
抗滑桩要按桩排方向及控制桩身的里程、坐标位置准确放线定位。
普通地质情况桩身开挖
a.抗滑桩施工前应先将桩位附近边坡或表层易滑塌部分清除,并做好桩位附近地表水的拦截工作。
b.抗滑桩跳桩分节开挖,做好锁口盘和每节护壁。每节开挖深度不超过1m,开挖一节,做好该节护壁,当护壁砼具有一定强度后方可开挖下一节,护壁各节纵向钢筋必须焊接,禁止简单绑扎。
c.浇筑护壁砼时,必须保证护壁不侵入桩截面净空以内。桩坑开挖过程中应随时校准其垂直度和净空尺寸。 特殊地质情况桩身开挖
2#滑坡西块滑体6#~15#地质为褐黄、褐灰、褐黑色亚黏土,顶部松散。滑坡地段地表水、地下水丰富,桩身开挖过程中渗水量大,土质流动性大,呈流塑状,桩身护壁四周坍塌严重,成孔困难。护壁后侧的部位空洞严重,已完成的护壁承受土压力极大,导致护壁变形、开裂,给工程施工安全带来极大隐患。
特殊地质抗滑桩护壁施工处治方案:
(1)已完成的护壁,由于变形、开裂严重,用φ108*6钢管做横撑做临时支撑,控制护壁变形。
(2)在已完成的护壁上开孔,由孔口处向护壁后空洞部分填充C25砼,直至护壁后空洞完全密实为止。护壁开孔由上往下,尺寸为30×30cm方孔,按2m间距梅花型布设,并在开孔处适当加设φ25Ⅱ级钢筋,使护壁、填充砼、桩周土体形成一体。
(3)护壁砼厚度由原设计的`20cm调整至40cm,护壁钢筋由原单层钢筋网调整为双层钢筋网。抗滑桩每节护壁长度控制60cm。
(4)为保证抗滑桩顺利施工,在滑动面地段布置超前小导管,超前小导采用L=2mφ42*4花管,间距为50×50cm梅花型布置,外插角30度,小导管超前有效长度为,可以分二个至三个循环进行开挖。小导管采用双液注浆机注双液浆,双液浆配合比为C:S=1:水灰比为,注浆压力为。小导管不仅固结已开挖段护壁四周背后松散体,还起到超前支护的作用。
(5)护壁开挖严重无法进行,下步开挖时,回填透水性材料碎石土至开裂处进行二次开挖。
抗滑桩锚索施工
a.锚索孔位测放应准确,偏差不得超过±3口,倾角允许误差小于锚索长度的3%;考虑沉碴的影响,为确保锚索深度,实际钻孔深度再大于设计深度。
b.锚索钻孔时禁止开水钻进,以确保锚索深度施工不致于恶化滑坡工程地质条件。2#滑坡锚索施工时,锚索孔眼时常发生塌孔,不能正常施工。处治方法为注双液浆固结松散体,钻机二次钻孔。
c.锚索张拉分五级进行,每级荷载分别设计拉力的、、、、倍,最后一级需要稳定10~20分钟外,其余每级需要稳定5分钟,分别记录每一级钢绞线的伸长量。在每一级稳定时间内必须测读锚头位移三次。锚索张拉除考虑预张拉外还要交替分级张拉,交替张拉可保证各孔锚索受力均匀,张拉后若有明显的预应力损失,及时进行补张拉。
d.张拉到最后一级荷载且变形稳定后,卸荷至锁定锚索。锚索锁定后,按要求切除多余钢绞线,锚头及锚孔在桩身的锚孔部位补浆完成后,用C25砼及时封闭锚头。
5 结论
以上对滑坡的形态特征、影响边坡稳定性因素及滑坡形成条件、滑坡的防治措施做了简单的介绍。天然的或人工开挖形成的边坡到处可见,由于各种原因导致边坡失稳,引起各种规模的滑坡时有发生,给人们的生产生活带了巨大的灾难。因此,作为土木工程技术人员,我们有责任和义务去研究和治理滑坡,从而减少滑坡的发生和降低因滑坡造成的损失。相信通过我们研究的不断深入,滑坡现象将在一定程度上得到控制,我们的公路建设也会更加安全。
参考文献
[1]隆威,郝宇.关于某高速公路滑坡原因及处治措施分析.
[2]施凤彬.浅谈滑坡群抗滑桩施工技术.
[3]肖庆丰,孙连军,王火明.浅谈滑坡成因及防治措施[J].中国水运(学术版),2006,9.
1、 块石砂浆胶结充填技术研究,1994年获中国有色金属工业总公司科技进步一等奖2、 JFG3基床翻浆冒泥病害整治固化剂及配套施工工艺,2004年获广铁集团科技进步三等奖3、 利用分形理论分析节理裂隙岩体的特征2002年获湖南省自然科学二等优秀论文奖4、 岩石地基承载力标准值的确定,1998年获湖南省自然科学三等优秀论文奖5、块裂岩质边坡稳定性分析理论及工程应用研究,2002年获中南大学优秀博士学位论文6、1996年被评为中国有色金属工业总公司跨世纪学科和技术带头人7、长沙市蔡家冲路K1+580~640段滑坡勘察,2007获中国化工学会科技进步二等奖8、永州市坦塘垃圾填埋处理场岩土工程勘察2008获中国化工学会科技进步二等奖9、板裂介质理论及其在边坡稳定性分析中应用2008年获湖南省自然科学二等优秀论文奖,排名第一10、滑坡预测预报集成软件 2008年获国家版权局软件著作权,排名第一11、西部地区公路地质灾害监测预报软件年获国家版权局软件著作权12、西部地区公路地质灾害监测预报技术研究2009年获中国公路学会科技进步一等奖13、高速公路崩塌滑坡地质灾害预测与控制技术,2010年获湖南省科技进步二等奖14、浅埋暗挖水下隧道关键技术研究,2010年获中国铁路工程总公司科技进步一等奖15、浅埋暗挖水下隧道关键技术,2011年获中国施工企业管理协会科技进步一等奖16、山地城市中心地区轨道交通地下工程安全建设关键技术,2011年获中建总公司科技进步三等奖18、浅埋暗挖水下软岩双洞隧道修建技术,2012年获湖南省科技进步三等奖19、V型河谷复杂环境条件下公路工程项目线路优化及建造关键技术,2012年获中建总公司科技进步二等奖,排名第二20、郑州地铁中心商业区车站及盾构区间隧道施工技术研究,2013年获洛阳市科技进步二等奖已公开发表的文章(共计140多篇,51篇被EI,ISTP收录,9篇被SCI收录)1、傅鹤林 块石胶结充填体稳定性研究 《矿业研究与开发》94年2期,被EI收录2、 傅鹤林用节理概率模型对块体理论的修正 《矿业研究与开发》96年4期,被EI收录3、 傅鹤林. 桑玉发. 用突变理论预测地下采场冲击地压发生的可能性《金属矿山》96年1期4、傅鹤林,李亮李磊膨胀土结构的分形特征研究《长沙铁道学院学报》2000年1期, 被 EI收录5、李亮,傅鹤林. 岩体节理裂隙特征的分形研究《铁道学报》2000年2期 EI 收录6、朱汉华 傅鹤林公路连体隧道设计与施工实践研究 《中国铁道科学》2003年5期,被 EI收录7、傅鹤林,韩汝才,朱汉华 破碎围岩中单拱隧道荷载计算的理论解研究 《中南大学学报》2004年2期,被 EI收录8、傅鹤林,周宁板裂介质理论及其在边坡稳定性分析中应用 《中南大学学报》2005年6期,被 EI收录9、周中,傅鹤林堆积层边坡开挖致滑的原位监测试验研究.《岩石力学与工程学报》 2006年第11期.,被 EI收录10、周中,傅鹤林土石混合体渗透性能的正交试验研究《岩土工程学报》2007年第3期.,,被 EI收录11、周中,傅鹤林土石混合体渗透性能的试验研究《湖南大学学报》2006年第6期,被 EI收录12、周中,傅鹤林堆积层边坡人工降雨致滑的原位监测试验研究《中国铁道科学》2006年第4期,被 EI收录13、董辉 , 傅鹤林 , 冷伍明一种用于机载系统定位的坐标转换方法 《系统仿真学报》2006年7期,被 EI收录14、董辉, 傅鹤林 , 冷伍明滑坡变形的支持向量机非线性组合预测《铁道学报》2007年1期被 EI收录15、周宁 傅鹤林引入修正因子的非等时距时变参数灰色预测模型及应用《岩土工程学报》,2006年6期,被 EI收录16、吕建兵,傅鹤林利用模糊综合评判方法选择岩溶软基处理方法,《岩土力学》,2005年5期,被 EI收录17、傅鹤林块裂岩质边坡稳定性分析理论及其在工程中的应用 2002年获中南大学优秀博士学位论文18、周利金,傅鹤林,万剑平 喷粉桩在软土地基处理中的应用《湖南交通科技》2006年3期19、傅鹤林,周昌达用块体理论分析洞室稳定性 《长沙矿山研究院季刊》 1991年4期20、傅鹤林,桑玉发采场冒顶的声发射预测预报《岩石力学与工程学报》1996年4期21、傅鹤林,李亮,刘宝琛. 降雨量的预测预报《中国铁道科学》2002年4期22、傅鹤林,范臻辉,刘宝琛利用神经网络对膨胀土分类《中国铁道科学》2002年5期23、傅鹤林,范臻辉,朱汉华.板裂介质围岩中的隧道衬砌与围岩相互作用机理研究公路交通科技 2003(5)24、傅鹤林,刘宝琛路基基床翻浆冒泥病害整治的固化材料的室内试验研究第九届全国土力学会议文集 清华大学出版社 2003年10月25、傅鹤林,卜翠松龙万学贵州地质灾害特点 《湘南学院学报》 2005年5期26、董辉,傅鹤林,刘金松大跨度地下通廊顶进设计《施工技术》,2005年6期,27、傅鹤林计算机技术在土力学与基础工教学中的应用探讨高等建筑教育 2002年1期28、张卫国,傅鹤林某膨胀土路堑滑坡加固设计的探讨 《交通科技》 2005年2期,排第229、朱汉华,傅鹤林不同隧道端面几何参数情况下设计荷载的确定《湘南学院学报》 2004年5 期30、周中,傅鹤林堆积层滑坡野外模拟试验方案设计 《公路》2006年1期,31、吕建兵,傅鹤林深埋隧道衬砌荷载计算的理论解探讨《西部探矿》2004年2期,32、郭建峰傅鹤林平溪特大桥滑坡成因分析 《隧道建设》,2005年1期,33、周中,傅鹤林堆积层边坡人工降雨模拟试验研究《岩土力学》2007年第2期.,被 EI收录34、周中,傅鹤林植草滑坡加固机理的数理统计研究《路基工程》 2006年第7期,.35、周中,傅鹤林堆积层滑坡现场模拟试验方案设计《公路》2006年第1期: 74~80,被 EI收录36、傅鹤林,周中堆积层边坡现场开挖试验研究. 《铁道学报》2006年第4期.37、韩汝才,傅鹤林. 国内外崩滑、泥石流监测整治技术现状综述《西部探矿工程》2004年9期,38、彭思甜,傅鹤林周中改善膨胀土性能的固化剂试验研究《西部探矿工程》2004年6期,39、李雷,傅鹤林志溪河大桥桥台整改后的力学分析及评价《隧道建设》2004年1期40、吕建兵,傅鹤林复杂填充性岩溶软基加固的设计与施工 《采矿技术》2005年2期,41、刘金松,傅鹤林利用模糊综合评判法优选深基坑支护方案《采矿技术》2005年2期,42、郭建峰,傅鹤林 块体理论在潜在崩塌体稳定性分析中的应用《中国地质灾害与防治学报》2006年 17卷 3期起止页码:14-1743、王雄鹰,傅鹤林华能岳阳电厂二灰坝滑坡机理及加固技术《企业技术开发》 2007年5期:69-7344、傅鹤林,陈芬湖南地质灾害的特点及对防灾减灾的警示,湘南学院学报,2007年2期45、刘金松,傅鹤林 复杂地质条件下盾构隧道掘进方向控制技术 第三届全国公路科技创新论坛2007年5月31日46、朱汉华,傅鹤林连拱隧道设计施工研究与实践 隧道高层论坛论文集 2002年6月47、Dong Hui, FU Helin On Hyper-Parameter Selection of Support Vector Machines for Slope Deformation Time Series Regression and Prediction, 10 international Symposium on Landslides and Engineering Slope 2007 Changsha, ,被 ISTP收录48、董辉,傅鹤林 boosting 集成支持向量回归机的滑坡位移预测,《湖南大学学报》,2007年,34(9):6-10, ,被 EI收录49、傅鹤林李园园岩溶地基的国内外现状综述《采矿技术》2007年4期50、TIANQingyan Fu Helin Experimental Study of the Light Dynamic Penetration Method to Test Shallow Fill of Coarse-sand in Subsoil EngineeringFirst International Symposium on Geotechnical Safety & Risk, October 18-19, 2007, Shanghai, China,被 ISTP收录51、Fu Helin He Xianfeng Luo Qiang FORECASTING OF ROCKFALL IN K2403+500 OF G320 Proceedings of the 2nd International Conference on Geotechnical Engineering for Disaster Mitigation & Rehabilitation (GEDMAR08) ,被 EI,SCI收录52、董辉,傅鹤林 滑坡位移时序预测的核函数构造《岩土力学》2008年1期,EI 收录53、董辉,傅鹤林 基于Takens 理论的支持向量机滑坡位移预测《中国公路学报》,2007,20(5):13-18 ,被 EI收录54、罗建强傅鹤林边坡崩塌的预测预报技术研究《采矿技术》2007年4期,55、祝志恒傅鹤林蒲浩等构建Delaunry三角网的一种新型生长法—壳外插入法《铁道科学与工程学报》,2007年6期:67~7256、郭明香傅鹤林沈弘 隧道施工风险的动动态评价《采矿技术》2008年4期“105~10757、傅鹤林,尹光明.既有线200km/h提速客货共线直线段轨道动力特性,《防灾工程学报》,2009(3)58、李昌友傅鹤林. 风化板岩水理特性研究铁道科学与工程学报 2009年1期59、傅鹤林李昌友. 堆积体的人工开挖致滑试验研究. 《中南大学学报》 2009年3期,EI 收录60、 Guo Lei, Fu Helin Slope Stability Appraisement Base on Fuzzy-Neural Network 《2009年第三届国际岩土工程防灾减灾学术研讨会》,261-26661、Guo Lei , Fu Helin. Mechanism Study of Mouzhudong Landslide 2009 GeoHunan,202-207,被 EI收录62、田卿燕,傅鹤林.基于灰色-突变理论的崩塌时间预测预报方法,《华南理工大学学报》,2009年,EI收录63、傅鹤林 吴小策 聂春龙何贤锋.山涧软土的流变工程特性试验研究,《岩土力学》,2009年增刊,被 EI收录64、佘小年,傅鹤林,祝志恒.基于离散条柱的三维滑体构造方法。《路基工程》,2010年2期65、李凯,傅鹤林,郭明香,陈芬.板岩路堑边坡开挖扰动效应分析。南华大学学报66、傅鹤林,张聚文,黄陵武.软弱围岩中大跨度浅埋偏压小间距隧道开采的数值模拟.《采矿技术》,2009年5卷,12-2267、杨甲豹,傅鹤林,谭捍华.TDR在边坡监测中应用试验研究.《全国山区公路环境与岩土工程学术会议论文集》.403-40768、Wenbing, Lu, Helin, Fu,Hong, Shen Assessment of Collapse Disaster during Tunnel Construction,The 4th International Symposium on Lifetime Engineering of Civil Infrastructure, 200969、郭磊,傅鹤林基于人工神经网络的梅关隧道围岩级别判别,现代隧道,2010年4月70、郭磊,傅鹤林,欧阳刚杰考虑流固耦合效应的水下隧道岸坡深基坑开挖数值模拟,现代隧道,2010年6月77、LI-Kai1, FU Helin, TAN Hanhua, Mao Ali1,Zhou Zhong1 Rainfall-Induced Slope Instability Rock Mixture Flow - Structure Interaction Numerical Simulation, Electronic Journal of Geotechnical Engineering 2010 R 1931-194671、LI-Kai, FU Helin TAN Hanhua He Yuwu New Strengthening Technique for Slope in Guizhou Highway, Electronic Journal of Geotechnical Engineering ,2010 R1947-196572、郭磊,傅鹤林.基于流固耦合效应的浏阳河水下隧道台阶法开挖数值模拟,十四届隧道与地下工程分会,2010年11月长沙73、傅鹤林,郭磊.基于流固耦合效应的浏阳河水下隧道CD法开挖数值模拟,十四届隧道与地下工程分会,2010年11月长沙74、欧阳刚杰,傅鹤林.水下隧道施工监控量测,十四届隧道与地下工程分会,2010年11月长沙75、Guo Lei, Fu Helin. Deformation Calculation of Variable Cross-section Anti-slide Piles,《Journal of Electronic of Geotechnical Engineering》, 2010(M),EI原刊76、Guo Lei, Fu Study on Application of Time Domain Reflectometry to Highway Slope Monitoring,《Journal of Electronic of Geotechnical Engineering》, 2010(M) ,EI原刊77、Chunlong Nie,Helin on Impacts of Construction Technology on Bearing Capacity of Grouting Piles Frontiers of Manufacturing Science and Measuring Technology Part 3 (TRANS TECH PUBLICATION):1367-137078、Xiaonian She, Helin Fu. Railfall-induced Slope Instability Rock Mixture Fluid-structure Interaction Numerical Simulation Frontiers of Manufacturing Science and Measuring Technology Part 3 (TRANS TECH PUBLICATION):1371-137479、Wenbin Lu, Helin Fu. Study on Application of Time Domain Reflectometry to Highway Slope Monitoring. Frontiers of Manufacturing Science and Measuring Technology Part 3 (TRANS TECH PUBLICATION):1375-137880、ZHOU Zhong(周中), WANG Hong-gui(王宏贵), FU He-lin(傅鹤林), LIU Bao-chen(刘宝琛).Influences of rainfall infiltration on stability of accumulation slope by in-situ monitoring test,刊物名称:J. Cent. South Univ. Technol. (2009) 16: 0297?0302 出版年:2009,被 EI,SCI收录81、刘运思,傅鹤林等.不同层理发明后卫影响下板岩各向异性巴西劈裂试验研究,《岩石力学与工程学报》2012年第4期,被 EI收录,82、曹琦,傅鹤林等.隧道爆破振速小波包及数值模拟对比分析,《铁道科学与工程学报》2012年2期83、王松周,傅鹤林等.基于卸荷减跨机理的大跨度隧道开挖优化,《铁道科学与工程学报》2012年2期被CSCD收录,84、刘运思,傅鹤林等.基于有限元强度折减法对深路堑边坡施工工序优化研究,《南华大学学报》2011年6期85、吕建兵,傅鹤林等.隧道填充性岩溶地质超前预报技术,《路基工程》2011年6期被CSCD收录,86、吕建兵,傅鹤林等.隧道填充性岩溶软基弹塑性固结沉降机理研究,《路基工程》2011年6期,被CSCD收录87、孙广臣,傅鹤林等.桥隧邻接工程多源损伤室内模型试验研究,《中南林业科技大学学报》,2011年4期,被CSCD收录88、Fu Helin,Li Kai. The field study of the remediation of multi-pumping, Frontier of advanced materials and engineering technology 2012年2期,被EI,SCI收录89、孙广臣傅鹤林桥隧相连工程多源损伤模型试验方法研究 铁道学报34卷8期P109-116 ,被EI收录90、孙广臣傅鹤林软弱围岩中桥隧搭接多源损伤影响因素分析铁铁道科学与工程学报9卷4期P39-44 ,被CSCD收录91、袁维,傅鹤林偏压隧道的进洞施工扰动效应及安全监控铁道科学与工程学报9卷4期P66-70 ,被CSCD收录92、孙广臣傅鹤林,桥隧搭接工程多源损伤及车辆冲击模型试验研究 振动与冲击 2012年2期115-12393、孙广臣傅鹤林,软岩下桥隧相连段车辆冲击效应模型试验研究岩土力学第 33 卷第 10 期2929-293694、刘运思,傅鹤林.基于 Hoek-Brown 准则对板岩抗拉强度研究 岩土工程学报,2013年2期
译自 Environment Geo1ogy,2003(43):503~512。
Mowen Xie1Tetsuro Esaki1Guoyun Zhou1Yasuhiro Mitani1著
张晓娟2译 罗靖筠2校 朱汝烈2复校
(1Environmental System Institute,Kyushu University,Hakozaki 6-10-1,Higashi Ku,Fukuoka,Japan;2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】本文在传统的边坡稳定性三维分析模型的基础上,提出了一个全新的基于GIS的边坡稳定性三维栅格分析模型。在这个模型中,假定初始滑动面就是椭球底面,采用蒙特卡洛(Monte-Carlo)随机模拟方法,在求取最小安全系数法的同时,确定出最危险滑动面。运用GIS栅格模型和GIS数据模拟滑坡滑动过程时,滑坡体将沿主滑方向滑动,直到其安全系数上升到1为止。所有的计算均可通过一个称为三维边坡地理信息系统(3DSLOPGIS)的计算程序来完成,该程序主要利用GIS的空间数据处理分析功能。
【关键词】确定性模型地理信息系统(GIS)蒙特卡洛(Monte-Carlo)模拟滑动模拟三维边坡稳定性
1引言
滑坡不稳定性和风险评价不但已成为地学家和工程专家们感兴趣的主要课题,同时也成了世界各地政府部门和管理者关注的焦点。据统计世界上每年约有600人葬身于滑坡灾害中。在许多发展中国家,自然灾害所带来的经济损失,占总国民生产总值的1%~2%。
近年来,由于地理信息系统具有强大的空间数据处理功能,被广泛运用于自然灾害评价领域。GIS是由硬件和软件组成的系统,它可以实现数据采集、输入、操作、转换、可视化、组合、质疑、分析、建模和输出等过程。GIS对空间数据具有强大的分析和处理功能。同时,基于GIS的地质技术分析模型,可以简便而有效地分析滑坡稳定性。目前它已经被广泛地用于土木工程和地质工程中,进行边坡稳定性的分析。
我们通常认为一个传统的模型无论是对均质滑坡还是非均质滑动都是适用的。稳定性指数是被广泛应用的、基于岩土工程模型和物理力学参数的安全系数。安全系数的计算需要几何数据、剪切强度数据及孔隙水压力数据,正确的结果取决于可靠的数据和恰当的模型。尽管输入的数据会较大程度地影响安全系数,但一个可靠的确定性模型对于取得可靠结果则更为重要。确定性计算可在GIS系统内执行,也可利用其他程序完成。若使用其他程序计算,则GIS只作为一个空间数据库用来存储、显示、更新输入数据。此方法主要优点是利用外部模型计算可以节约时间;而其缺陷是对从外部模型获得的数据进行转化时较为复杂。因为每一个程序都有其自己的数据格式和数据结构,数据转换成为一个主要的问题。有些程序的输入模块只允许人工输入数据。只有当这些程序所默认的数据格式都是 ASCII码时,数据转换才可直接进行。运用外部模型的另一个缺点是计算结果通常不是按GIS的空间分布模式来表达,而是以点或线的形式表述的。因此,改变这种计算结果的表达形式也是个主要的问题。
用来计算安全系数稳定性模型的边坡是二维或三维的。因为一个地区包括很多边坡,而且必须分别对每个边坡做分析,所以利用这些模型计算安全系数的空间分布非常花费时间。要克服数据转换的困难,可以利用GIS内部确定性计算模型来实现。然而这一方法也有缺点,那就是由于应用复杂算法、迭代过程及在常规二维 GIS中的三维体积等复杂局限性,使得只有简单的模型能较容易实现。当前,只有基于GIS的无限边坡模型能分别计算出每个像元的安全系数。研究表明,只有当越来越多的成熟的三维模型和GIS系统得到使用后,才能彻底解决这类问题。
从近来对 GIS用于边坡稳定性分析的调查中发现,大部分研究者潜心于运用统计学方法来确定边坡破坏与影响因素之间的关系。尽管GIS能对区域数据进行了准备和处理,但是只有极少量的研究者运用了GIS的集成功能和边坡稳定性的确定性模型。
即使在很短的距离范围内,边坡破坏在空间上都有其不同的几何结构。因而,运用三维模型分析边坡稳定性是合理的。从20世纪70年代中期以来,三维稳定性模型的发展和运用日益受到关注。在地质力学的著作中提到了几个三维分析方法。
上面提到的大部分方法都用到了柱状图法。这些方法将柱体之间的作用力,或者说作为三维安全系数计算的假定前提,都忽略不计。因为所有与斜坡相关的GIS数据都可转成栅格数据,所以这些基于三维模型的柱体,就可能借助于使用GIS栅格数据用来进行三维稳定性的计算。然而,长期以来大家习惯采用人尽皆知的“一维模型”——“无限斜坡”模型,来描述滑动面与地面平行的长期天然边坡的潜在危险性。这样的模型仅仅可以用于浅层斜坡失稳分析和一些存在深层滑坡的区域性研究。
由于算法复杂、步骤重复和三维数据在二维GIS中难于表达,早期的文献中并没有提及三维确定模型的应用。为了克服 GIS数据的外部转换和GIS内部算法复杂等困难,此次研究中,在GIS软件组件(a GIS component)中使用了Visual Basic程序。三维因子的计算和滑动过程的模拟由计算机内的三维边坡地理信息系统(3-DSLOPGIS)的计算程序完成。在这个系统中,GIS组件(ESRI公司生产的)可以完成所需的GIS功能,就像普通的GIS软件一样,它可以有效的管理和分析所有与滑动相关的数据。所有用来计算三维斜坡安全系数的数据都采用GIS的数据格式(例如矢量和栅格数据层),因此,没必要在GIS数据格式和其他程序的数据格式之间进行数据转换;同时,复杂算法和三维问题的交互程序也可以理想的实现。
在此次研究中,将基于GIS栅格数据和基于柱状图的三维边坡稳定性分析模型相结合(Hovland,1977),演绎了一个新的基于GIS栅格的三维确定性分析模型。
运用蒙特卡洛随机模拟方法求最小安全系数值,从而确定临界滑动条件。假定基本滑动面是一椭球体的较低部分,临界滑动则受不同地层受力情况和不连续界面状况的影响而变化。客观事物的这种变化引出最小三维安全系数。
如果滑坡的三维安全系数小于1,滑坡就有滑动的危险,那么评估滑坡灾害的规模和影响范围是非常重要的。因此,在此研究中,采用基于GIS三维栅格数据模型和GIS栅格数据来模拟滑坡滑动过程的目的,就是评估滑坡危险性和预测其影响范围。
2基于GIS的三维模型
利用GIS的空间分析功能,所有与三维安全系数计算有关的输入数据(如高程、倾向、坡度、地下水、地层、滑动面和力学参数等)都有其对应的栅格元,而所有与斜坡相关的数据都是栅格化的。当这些数据输入到确定的边坡稳定性模型中时,就可计算出一个安全系数值。下面在Hovland模型的基础上,详细介绍基于GIS的三维模型。在这个模型中,考虑了孔隙地下水压力,所有输入数据都能简单地转换成栅格数据。
图1是具有潜在滑动面的滑体的三维几何示意图。滑坡的稳定性与地质岩层、地貌、地质力学参数和水动力条件有关。
图1边坡坍塌三维景观
图2所示是土壤(或岩石)小柱状研究体物质的离散性。所有与滑坡相关的数据都可用如图2所示的柱状三维可视图来表示。假定每一个柱体单元的垂面均为无摩擦面(柱体单元的垂面不受其他边界影响,或其影响可忽略不计),三维安全系数可用公式(1)表示:
地质灾害调查与监测技术方法论文集
式中:F3-D为三维斜坡安全系数,W为一个柱体的重量,A为滑动面面积,c为内聚力,φ为内摩擦角,θ为滑动面的角度,而J、I为在斜坡破坏范围栅格内的行列数和柱体数。如果没有GIS,则基于柱体模型的三维安全系数的计算将是冗长且耗时的工作,数据的更新和增加也极其不便。然而,在GIS中,通过运用GIS空间数据处理与分析功能,整个研究区的边坡稳定性相关数据可用如图3所示的矢量图层来描述;而对于每一层,则可通过GIS空间数据处理与分析功能得到栅格数据,其像元大小可根据精度需要而定。
图2滑动面和三维棚格柱状图
现在,将斜坡破坏划分为基于栅格数据的柱体。参考图2,诸如地表、地层、地下水、裂缝和滑动面之类的空间数据均可从栅格数据层中得到。因为与斜坡相关的数据量非常大,所以不能高效的管理所有的栅格数据集。因此,在三维边坡地理信息系统中,有一个专门储存这些栅格数据的点数据库,其中,有一个属性表用来链接所有与滑动相关的数据。每个栅格柱状图的中心点设置点类型,其他区域则设置与滑坡相关的一些数据(例如地面高程、地层和裂缝的高程、地下水、滑动面的深度等等)。表1所示即是属性表的一个实例。
图3边坡稳定性分析GIS图层
表1点数据库的实例描述
另一方面,为了控制滑坡边界和有效管理空间数据并进行分析,滑坡的边界线被定义为多边形类型文件。
基于这种点数据库,公式1可以改成基于GIS的方程。这里所有的阻力和滑力都是沿着滑动方向的,而不必如 Hovland的模型所用的Y轴方向。在本研究中,假定斜坡区域的主要倾斜方向为可能滑动方向。根据图4,滑动表面面积可由公式(2)得到。
地质灾害调查与监测技术方法论文集
从图4推导出如下公式:
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
接着,x和y轴的倾角推导如下:
地质灾害调查与监测技术方法论文集
记α=cellsize/cosθxz和b=cellsize/cosθyz,则一个栅格柱状图的滑动面面积为:
地质灾害调查与监测技术方法论文集
滑坡范围主滑动方向的倾角计算公式如下:
地质灾害调查与监测技术方法论文集
至此,三维边坡水平滑动方向安全系数可以用下面的公式计算:
地质灾害调查与监测技术方法论文集
图4三维安全因子推导公式的一个栅格柱状图
这里,对于每个栅格,Zji,zji分别为地表高程和滑动面高程,uji为在滑动面上的孔隙水压力,而 γ′为单位重量。
为了检验基于栅格的GIS三维稳定分析模型,我们运用这个模型做了一个实例计算。实例问题为一个均质的粘土滑坡,具有球形滑动面,其他各种参数如图5所示。在图5中,c为内聚力,φ为摩擦角,R为瞬时摩擦力,γ为土的单位重量。运用封闭式(closed-form)算法得出三维安全系数为。运用CLARA模型算得安全系数为。同样的问题运用三维边坡模型算得三维安全系数范围为到,它取决于用于被分离的边坡柱体的数量。
图5实例问题验证
运用基于GIS栅格的三维稳定分析模型(图5),并将格网尺寸定为时,算得三维安全系数为;而当格网尺寸为时,算得安全系数为。很明显,与封闭式算法相比,基于栅格模型的GIS可有效的用于三维边坡稳定性评估。
3确定临界滑动表面和蒙特卡洛模拟
滑动面只能通过岩土工程调查来确定,由于地质调查的费用比较昂贵,因此滑动面通常是很难确定的。因此,边坡稳定性评价对临界滑动面的确定是非常重要的。
为了判定三维临界滑动情况,利用蒙特卡洛随机模拟方法来计算三维安全系数最小值。假定最初的滑动面是一个椭球体的较低部分,边坡表面则根据不同地层受力情况和不连续界面条件而改变。最终得到危险滑动面,同时可得到相关三维安全系数的最小值。
4椭圆坐标转换
假定最初的滑动面是一椭球体的较低部分,椭球体的倾斜方向设置为与研究区主要的倾斜方向一致;将椭圆的倾角基本上设定得与研究区起伏变化的倾角接近。其主倾向为α,主倾角为β,它们是由边坡破坏区域主要栅格像元的值确定的。假定倾向和倾角属正常分布,则将主倾向α和倾角β代入分布模型中:
地质灾害调查与监测技术方法论文集
运用公式(10)和(11)完成坐标转换。图6显示了坐标转换过程。
图6坐标转换过程
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
式中:x、y、z为全球大地坐标, 为当地坐标,x0、y0、z0为椭球体中心点坐标。
5 Z值的确定和滑动面的倾斜度
滑动面上“B”点的Z值是根据直线 AB和椭圆,由公式(12)计算的结果确定的(见图7)。
地质灾害调查与监测技术方法论文集
对于每个栅格像元,滑动面的倾向和倾角可通过下面的公式计算得出,像元(j,i)的倾角可以通过图8中点1~4的Z值来确定。点1~4的值由公式(13)(14)(15)算出,滑动面的倾向和倾角由公式(16)算出。
图7确定滑动面上的Z值
图8滑动倾角的计算
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
这里,Z(j,i)为像元(j,i)的Z值,θ为倾角,β0是相对于X轴的倾向。在GIS中,倾向是与 Y轴之间的夹角。因此,当最高点是点3时,倾向是90-β0;当最高点是点4时,倾向是90+β0;当最高点是点2时,倾向是270-β0;当最高点是点1时,倾向是270+β0。
6随机模拟
为了确定临界滑动面,蒙特卡洛模拟通常用于为三维边坡稳定性分析选择变量。这些变量是椭球体的中心点、几何参数和倾角。椭球体的中心点作为研究区的中心点需要首先确定,然后在一个确定的范围内随机选择。
椭球体的几何参数a、b、c是由用户在一定范围内随机设定的,确定范围如公式(17):
地质灾害调查与监测技术方法论文集
假定a,b,c都均匀分布,则蒙特卡洛模拟的随机变量由公式(18)和(19)来算出。
在[0,1]范围内平均分布的随机变量可通过全等乘积方法得出:
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
式中:ri为在[0,1]范围内平均分布的随机变量。在[a,b]范围内平均分布的随机变量可由公式(19)计算得出。
地质灾害调查与监测技术方法论文集
式中:xi为在[a,b]范围内平均分布的随机变量。
椭球体的倾角设定为平均分布的一个随机变量。平均分布范围为主倾角及其在一个确定的波动范围之内变化的变量。
7 计算三维安全系数最小值的过程
整个研究区(或边坡破坏范围)可以被均分为若干小矩形栅网,如同基于栅格的GIS一样。关于基于栅格的三维边坡稳定性分析的数值计算,所有的计算过程都可以通过前面提到的Visual Basic(利用GIS组件)来完成。这个软件叫三维边坡地理信息系统,是运用 Visual Basic 和ESRI公司生产的MapObjects 开发的。MapObjects作为GIS的一个组件,用来对GIS数据进行组织和空间分析。计算三维安全系数的过程如图9所示。
图9三维安全因子最小值计算过程
在这个过程中,数据模块的功能用来获得所有与边坡相关的地质、地貌、水动力学数据和地质力学参数;随机变量参数模块用来随机选择蒙特卡洛模拟的实验滑动面;三维边坡稳定性模块可用于计算三维安全系数;而危险滑动面及其安全系数可以通过一些实验计算得出。在图9中可以看到,关于GIS空间分析功能的所有模块可以通过GIS组件来实现。因为一个GIS组件是在三维边坡地理信息系统系统中完成的,所以可以有效地计算三维安全系数;同时利用与边坡相关的GIS数据,所有的相关数据和结果可以在三维边坡地理信息系统系统中实现可视化。
实例剖面如图10所示。在这个实例中考虑的因素有:4个地层、地下水和破坏面;其物理和力学参数如表2所示。
表2研究实例的物理和地质力学参数
图10断层面研究实例
图11计算次数与最小三维安全因子实验
为确定临界滑动面,对蒙特卡洛随机计算次数进行了实验,总共计算次数达到了1000次。每次实验计算的三维安全系数最小值的结果如图11所示。图中明确显示在实验计算了300次后,得到的安全系数最小值。这300次实验的结果见图12,这些计算结果差别不太大,其最小值为,最大值是。这个临界滑动的研究程序是建立在最小安全系数的计算基础之上的。而最小安全系数的计算结果取决于参数的随机选择。有关这一临界滑动实例的三维可视图见图13。通过三维模型与二维模型结果的比较,用Janbu法确定临界滑动面时,使用的是图10所示的二维模型和表2所列的参数,通过这种二维模型计算出的安全系数为,这要比用三维模型计算出结果的极小值()略小一点。
图12三维安全因子分布曲线
8滑坡滑动过程模拟
基于GIS栅格三维边坡稳定性分析模型和GIS栅格数据,对滑坡滑动过程进行了模拟,直到三维安全系数大于1为止。滑动方向按滑动面的主滑方向确定。图14中展示了由滑动面确定的八个滑动方向。例如,若滑面方向的倾角在°~°之间,则滑坡将要滑动的方向恰在该图的右上方(即“5”方向)。
图13临界滑动面三维展视图
图14滑动面的滑动主倾向
图15滑坡滑动过程模拟流程方框图
滑坡滑动过程的模拟流程见图15。首先,要计算滑坡初始状态时的三维安全系数,以确定其滑动的可能性。若其安全系数小于1,则接着进行下一步滑动过程模拟。先沿着由滑面主倾向确定的滑动方向移动滑坡多边形;接着,在新的滑坡多边形范围内,分步(每一步等于一个栅格大小)计算每一个栅格的DEM和滑动的变化,并再次计算下一步滑动的新滑动方向。并在新的DEM数据和滑动多边形范围的基础上,计算出新的三维安全系数。如果三维安全系数仍然小于1,则进行以下的新滑动步骤模拟。
在这种滑动模拟模型中,假定滑动面内摩擦角不改变,但除了在初始三维边坡安全系数的计算过程之外,假定滑动面没有内聚力(即内聚力为零)。
仍然用同样的实例(如图5所示),用不同的两种动力学参数进行滑坡滑动过程模拟:
情况1:c=4kN/m2,φ=110,y=23kN/m3
情况2∶c=6kN/m2,φ=°,γ=23kN/m3
第一种情况下,初始边坡安全系数为,在进行7步滑动之后,滑坡体开始趋于稳定,其安全系数是。部分滑动步骤剖面及三维视图变化如图16所示。在此图中,DEM的改变及滑坡体移动过程一目了然。运用三维边坡地理信息系统,也可将可视滑动过程表现为GIS地图和剖面图的形式。滑坡体沿水平方向的最终滑动距离为。
图16不同滑动阶段的地表和剖面三维视图
第二种情况下,滑坡体将一直向下滑动到平坦地区,水平方向滑动距离为14m。滑坡体最后停止滑动位置的三维展视图如图17所示。
图17滑坡体最后停止位置
9讨论和结论
在三维边坡稳定性柱状分析模型的基础上,开发了一个全新的基于GIS栅格的三维确定性模型,并且通过一个问题实例证实了其正确性。在三维边坡稳定性分析模型中,假定其初始滑面为一椭球面;其三维临界滑面,是利用蒙特卡洛随机模拟求取最小三维安全系数而确定的。基于GIS的栅格三维模型,滑坡滑动过程模拟用于判断滑坡灾害和预测滑动距离。已开发了作为计算程序软件的三维边坡地理信息系统,它足以完成一切有关三维边坡问题的计算,其中的GIS组件用于实现GIS的空间分析功能和有效数据的管理。因其具有空间分析、数据管理和与边坡相关的综合数据的GIS可视化等优点,所以三维边坡稳定性问题已经比较易于研究。自打全新的基于GIS栅格三维边坡稳定性分析模型问世,就为惯于使用传统数学方法研究边坡稳定性的工作者拓展了一个新的研究领域和数据库方法。
244 浏览 4 回答
348 浏览 2 回答
269 浏览 3 回答
264 浏览 3 回答
107 浏览 3 回答
272 浏览 3 回答
236 浏览 5 回答
118 浏览 3 回答
230 浏览 2 回答
281 浏览 4 回答
344 浏览 4 回答
128 浏览 7 回答
190 浏览 3 回答
321 浏览 4 回答
263 浏览 6 回答