小模数齿轮齿形误差图像测量法权转菊 (西安东风仪表厂计量处 710065) 摘要:本文提出了一种小模数齿轮齿形误差测量的新方法,该方法在极坐标系下采集齿廓边缘 摘要 点的坐标值,通过测量模型计算获得齿形误差,符合齿形误差定义,具有较高的精度. 关键字:齿形误差 关键字 光学测量 极坐标 数学模型 引言小模数齿轮尤其是模数在 ~ 的小模数齿轮广泛应用于航天航空,国防,IT,钟 表等领域的精密仪器仪表制造中.作为关键的运动传动件,其质量直接影响到仪器仪表的运动精度, 噪音,寿命等.因此,实现对小模数齿轮的高精度测量是保证仪器仪表质量的一个关键技术问题. 小模数齿轮由于其模数小而齿数通常较多,齿槽空间很小,很难采用传统的齿轮测量技术和仪 器.目前,普遍采用的测量方法是轮廓投影比较法和分度盘展成法.轮廓投影比较法即在轮廓投影 仪上,将齿轮与标准放大图进行比较,从而判定加工齿轮的齿廓精度,这种方法显然不能实现精确 检测.分度盘展成法测量效率低,受找正误差,分度误差的影响精度并不是很高. 近年来,随着光 学坐标测量机的应用和发展,基于 CCD 技术的齿轮测量方法的研究不断增多.本文作者研究了在光 学坐标测量机上对小模数齿轮齿形误差进行精密测量的一种新方法. 1 数学模型的建立 展开角增量与展开弧长增量的关系 按渐开线形成原理,渐开线上某一点的曲率半径 ρ 等于基圆上形成渐开线的起点 A 到曲率半 径 ρ 与基圆切点 B 间的弧长,ρ 也即展开弧长, 其展开角 w 与 ρ 之间的关系为: w =ρ/ r0 (式 1) ? 式中: r0 为齿轮的基圆半径 当展开角 w1 增加w 转角时,展开弧长的增 量为ρ. 与ρ 之间有一定的比例关系, w 如当 齿轮转动一度, ρ1 应增加齿轮基圆圆周长度为 则 1/360,所以得如下关系式: ρ=2πr0w/360=π/180wr0 式中:ρ 为展开弧长增量 ( 2 B1 A1 A2 ?A 式 2) 图 (1) 渐 开 线 形 成 原 理 1 ρ=ρ2-ρ1 极坐标系下展开角与极径的关系 按照几何关系,从图中可以看出: ρ= R2 r 0 2 2 R12 r 0 2 (式 3) wx=w2-w1=B2+cos-1 r0 r -B1- cos-1 0 R2 R1 r0 r - cos-1 0 R2 R1 (式 4) 也即:wx=B2-B1+cos-1 将式 3 和式 4 代入式 2 得: 2 R2 r 0 R12 r 0 2 2 =π/180r0 2-B1+cos-1 (B r0 r - cos-1 0 ) (式 5) R2 R1 从式 5 中可以看出, 如果我们以齿轮中心为极坐标中心, 靠近渐开线起始点测量一点作为极坐 标起点,建立极坐标系,在此坐标系下齿形上各点极径与极角应满足式 5 中的关系. 2 齿形误差的测量 由于齿形误差的影响,实际齿廓上各点的坐标值与理论值有差异,即相对一展开角实际齿廓上 展开弧长与理论值有差异.变换式 5,我们可以求出实际齿轮左右齿廓上这种差异. f= Ri r 0 2 2 R12 r 0 -π/180r0 i-B1|+cos-1 (|B 2 r0 r - cos-1 0 ) Ri R1 (式 6) 这种差异也是齿廓上各点曲率半径与渐开线上相应的理论曲率半径的差异. 最小值与最大值之 差即为包容实际齿形的两条最近的理论渐开线间的法向距离,符合 GB10095-85 规定齿形误差ff 定 义(见图 2) ,则齿形误差为: ff=fmax-fmin (式 7) 齿 顶倒 棱高 度 ? 工 作部 分 设 计 齿形 齿 根 起始 工作 圆 图 1 齿形 误差 示意 图 2 3 测量实例选用有背光照明系统和 CCD 视像头的坐标测量机对一模数为 ,齿数为 50 的小模数齿轮 进行实际测量.首先以齿轮中心为坐标原点,以齿廓上大于基圆半径一点为起点建立极坐标,然后 对齿廓进行测量,求得各点的极径及极角,通过数学模型计算齿形误差.测量数据及结果见表 1. 表1 右齿 R(mm) ω(°) 360 f (mm) 0 R(mm) 齿形误差测量结果 左齿 ω(°) 0 f (mm) 0 齿形误差:0-()= 齿形误差:()= 4 结论本文结合渐开线展成原理对极坐标系下渐开线上各点坐标关系进行了分析, 并给出了数学模型, 由此得出齿形误差测量方法.通过测量实例对测量方法进行了说明. 这种方法与传统的使用分度盘 测量齿形的方法相比,同样是图像测量法,但由于少了分度盘的找正误差,分度误差等误差影响因 素,测量精度大为提高,并且可利用坐标测量机柔性定位功能,形成测量程序进行批量测量,实现 对小模数齿轮齿形误差的高精度,高效率测量. 3